

 Navigation

 	
 index

 	
 next |

 	ClowdFlows 1 documentation

ClowdFlows documentation

ClowdFlows is a web based data mining workflow platform with real-time analysis capabilities http://clowdflows.org .

	The user documentation contains a detailed description of all available widgets in ClowdFlows. It also contains links to public workflows on http://clowdflows.org, using the widgets.

	The developer documentation contains instructions for setting up a local installation of ClowdFlows, creating new widgets and working with packages.

Table of contents:

	User documentation
	Tutorial

	Decision support widgets

	ILP/RDM widgets

	Complete list of categories and widgets

	Developer documentation
	Basics

	Advanced
	External packages

 Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ClowdFlows 1 documentation

User documentation

Tutorial

A good starting point for getting to know ClowdFlows is the interactive tutorial [http://clowdflows.org/editor/?tutorial=1]. It introduces the main concepts and actions needed for building workflows in ClowdFlows:

	Widget repository

	Widget inputs, outputs, parameters

	Arranging widgets on the canvas

	Connecting widgets into a workflow

	Executing a workflow

Decision support widgets

Widgets in ClowdFlows are organized into categories, based on their purpose. One such category is the decision support category which includes the following widgets:

	Weighted sum model, implementing a simple decision support model,

	Sensitivity analysis, offering the mechanism to see how each alternative’s score changes while changing the importance of one attribute,

	Decision support charts, implementing several charts, which are useful for making reports and overviewing the data.

An example workflow is shown below.

[image: ../_images/dec_supp.png]
 [http://clowdflows.org/workflow/383/]

Click the image to open the ClowdFlows workflow.

ILP/RDM widgets

The ILP/RDM category contains widgets enabling inductive logic programming (ILP) and relational data mining (RDM).
The aim of these widgets is to make relational learning and inductive logic programming approaches publicly accessible.
They provide an easy-to-use interface to several relational learning algorithms and provide data access to several relational database management systems.

The figure below shows an example workflow that demonstrates the usage of RDM widgets in Clowdflows.
More specifically, the workflow constructs a decision tree on the Michalski Trains dataset (stored in a MySQL database) using Aleph to propositionalize the dataset.

[image: ../_images/aleph-mysql.PNG]
 [http://clowdflows.org/workflow/2224/]

Click the image to open the ClowdFlows workflow.

Complete list of categories and widgets

A complete list of categories and widgets is also available.

 Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	ClowdFlows 1 documentation

Developer documentation

Basics

Setting up your own development
version

Creating a package

Creating a widget

Creating a widget - Example

Advanced

Removing widgets from exported packages

The structure of a ClowdFlows package: Decision support package

External packages

Creating external packages

Working with external packages: RDM package

 Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ClowdFlows 1 documentation

Index

 Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

 _images/GeneRanker.png

_images/orange-kNN.png

_images/orange-CN2-small.png

_images/question-mark.png

_images/417px-Latex_integers.svg.png

_images/File.png

_images/Task-List-icon.png

_images/orange-SVMEasy-new.png

_images/lookup.png
&3

_images/CF-filter-black.png

_images/ROCAnalysis_60.png

_images/d914a910_1.png

_images/genesynonyms.png
ENTREZ

_images/Upload-icon.png

_images/482063585452602669.png

_images/orange-RandomForest.png
&}Eﬁ

_images/Upload-icon_1.png

_images/dec_supp.png
E ds = tab @ tab

Load Dataset to Alter table
Orange Data Table ©
©

Pickle object String to file Decision support
© © charts
©

_images/ensemble-small.png

_images/querydatawithsg.png

_images/NoiseRank3.png

_images/orange-NaiveBayes.png

_images/builder.png

_images/Create-Range_1.png

_images/bar.png

_images/mysql.png

_images/selectsg.png

_images/BiomineNeighbourhood.png

_images/SEGS_HMR.png
A0
SEGS.

_images/d914a910.png

user_doc_bycategory.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

ClowdFlows user documentation

This part provides the user documentation for ClowdFlows widgets.
It presents every widget along with its description and the list of inputs, outputs and parameters.
Where appropriate, the values that could be chosen from, as well as the default value are given.
Finally, the documentation provides example usage of widgets, by showing a public workflow which includes the widget.

Category Big data

Category Classification

Widget: Naive Bayes

[image: _images/question-mark.png]
Naive Bayes with MapReduce

Algorithm calculates multinomial distribution for discrete features and Gaussian distribution for numerical features. The output of algorithm is consistent with implementation of Naive Bayes classifier in Orange and scikit-learn.

Reference:
MapReduce version of algorithm is proposed by Cheng-Tao Chu; Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun. “Map-Reduce for Machine Learning on Multicore”. NIPS 2006.

		Input: Dataset

		Output: Fit model (Fit model URL)

		Example usage: Naive Bayes - lymphography [http://clowdflows.org/workflow/2729/]

Widget: Gaussian Naive Bayes predict

[image: _images/question-mark.png]

		Input: Fit Model (Fit Model URL)

		Input: Dataset

		Parameter: Log probabilities (Calculate logarithm probabilities.)

		Output: Results

Widget: Linear SVM

[image: _images/question-mark.png]
Linear proximal SVM with MapReduce

Algorithm builds a model with continuous features and predicts binary target label (-1, 1).

Reference
Algorithm is proposed by Glenn Fung, O. L. Mangasarian. Incremental Support Vector Machine Classification. Description of algorithm can be found at ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-08.pdf.

		Input: Dataset

		Parameter: The weighting factor

		Output: Fit model (Fit model URL)

		Example usage: Linear SVM - sonar [http://clowdflows.org/workflow/2799/]

Widget: Linear proximal SVM predict

[image: _images/question-mark.png]

		Input: Fit model (Fit model URL.)

		Input: Dataset

		Output: Results

Widget: Logistic regression

[image: _images/question-mark.png]
Logistic regression with MapReduce

Algorithm builds a model with continuous features and predicts binary target variable (1, 0). Learning is done by fitting theta parameters to the training data where the likelihood function is optimized by using Newton-Raphson to update theta parameters. The output of algorithm is consistent with implementation of logistic regression classifier in Orange.

Reference:
MapReduce version of algorithm is proposed by Cheng-Tao Chu; Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun. “Map-Reduce for Machine Learning on Multicore”. NIPS 2006.

		Input: Dataset

		Parameter: Convergence (The value defines the convergence of the logistic regression.)

		Parameter: Max. number of iterations (Define a maximum number of iterations. If the cost function converges it will stop sooner.)

		Output: Fit model (Fit model URL)

		Example usage: Logistic regression - sonar [http://clowdflows.org/workflow/2801/]

Widget: Logistic regression predict

[image: _images/question-mark.png]
The logistic regression classifier is a binary classifier that uses numeric features. The classifier learns by fitting theta parameters to the training data using Newton-Raphson method to update theta parameters.

		Input: Fit model (Fit model URL.)

		Input: Dataset

		Output: Results

Widget: Multinomial Naive Bayes fit

[image: _images/question-mark.png]
The NB classifier uses discrete features. The NB estimates conditional probabilities P(x_j = k|y = c) and prior probabilities P(y) from the training data, where k denotes the value of discrete feature x_j and c denotes a training label.

		Input: Dataset

		Output: Fit model (Fit model URL)

Widget: Multinomial Naive Bayes predict

[image: _images/question-mark.png]
The NB classifier uses discrete features. The NB estimates conditional probabilities P(x_j = k|y = c) and prior probabilities P(y) from the training data, where k denotes the value of discrete feature x_j and c denotes a training label.

		Input: Fit model (Fit model URL.)

		Input: Dataset

		Parameter: m (Laplace Smoothing parameter.)

		Output: Results

Category Ensembles

Widget: Distributed Random Forest

[image: _images/question-mark.png]
Distributed Random Forest

Fit phase
Random forest algorithm builds multiple decision trees with a bootstrap method on a subset of data.
In each tree node, it estimates sqrt(num. of attributes)+1 randomly selected attributes (without replacement).
All decision trees are merged in large ensemble.

Predict phase
Algorithm queries as many trees as needed for reliable prediction.
Firstly, it randomly chooses without replacement 15 trees. If all trees vote for the same class, it outputs prediction. If there are multiple classes predicted, it chooses 15 trees again. Algorithm calculates difference in probability between most and second most probable prediction. If difference is greater than parameter diff, it outputs prediction. If a test sample is hard to predict (difference is never higher than diff), it queries whole ensemble to make a prediction.

Reference
Similar algorithm is proposed in: Justin D Basilico, M Arthur Munson, Tamara G Kolda, Kevin R Dixon, and W Philip Kegelmeyer. Comet: A recipe for learning and using large ensembles on massive data.

		Input: Dataset

		Parameter: Trees per subset (Number of trees per subset of data)

		Parameter: Max tree nodes (Max. number of decision tree nodes)

		Parameter: Min samples split (Min. number of samples to split the node)

		Parameter: Class majority (Purity of a subset.)

		Parameter: Measure (Select measure for estimation of attributes.)
		Possible values:
		Information gain

		Minimum description length

		Parameter: Discretization (Select equal frequency discretization or random discretization for numeric attributes)
		Possible values:
		Equal frequency discretization

		Random discretization

		Parameter: Random state (Define a random state)

		Output: Fit model (Fit model URL)

		Example usage: Random forest - segmentation [http://clowdflows.org/workflow/2731/]

Widget: Distributed Weighted Forest

[image: _images/question-mark.png]
Distributed Weighted Forest

Weighted forest is a novel ensemble algorithm.

Fit phase
Weighted forest algorithm builds multiple decision trees with a bootstrap method on a subset of data. In each tree node, it estimates sqrt(num. of attributes)+1 randomly selected attributes (without replacement). It uses decision tree to predict out-of-bag samples. For each prediction of an out-of-bag sample, it measures margin (classifier confidence in prediction) and leaf identifier that outputs prediction. Algorithm uses similarity matrix, where it stores similarities for each out-of-bag sample that was predicted with the same leaf. We assume that samples are similar, if the same leaf predicts them multiple times in multiple decision trees.
After algorithm builds all decision trees, it passes similarity matrix to k-medoids algorithm. Similarity matrix presents distances between test samples. We set parameter k as sqrt(num. of attributes)+1. k-medoids algorithm outputs medoids, which are test samples in the cluster centers of the dataset. Medoids are actual samples in a dataset, unlike centroids which are centers of clusters. Algorithm measures average margin for all samples that are in the cluster of certain medoid. It saves the average margin of a decision tree in its model. Algorithm uses this scores as weights of decision trees in predict phase.
Algorithm builds a forest on each subset of the data and it merges them in large ensemble. Each forest has its own medoids.

Predict phase
Algorithm selects a forest (or more, if it finds equal similarities with medoids in multiple forests), that contain most similar medoid with a test sample. Then it uses the same procedure like with small data. Algorithm calculates Gower similarity coefficient with a test sample and every medoid. Only decision trees with high margin on similar test samples output prediction and algorithm stores decision tree margin for each prediction. Algorithm calculates final values for each prediction: (number of margins) * avg(margins) and it selects prediction with highest value.

		Input: Dataset

		Parameter: Trees per subset (Number of trees per subset of data)

		Parameter: Max tree nodes (Max. number of decision tree nodes)

		Parameter: Min samples split (Min. number of samples to split the node)

		Parameter: Class majority (Purity of a subset.)

		Parameter: Measure (Select measure for estimation of attributes.)
		Possible values:
		Information gain

		Minimum description length

		Parameter: Discretization (Select equal frequency discretization or random discretization for numeric attributes)
		Possible values:
		Equal frequency discretization

		Random discretization

		Parameter: Random state (Define a random state)

		Output: Fit model (Fit model URL)

		Example usage: Weighted forest - lymphography [http://clowdflows.org/workflow/2797/]

Widget: Forest of Distributed Decision Trees

[image: _images/question-mark.png]
Forest of Distributed Decision Trees

Fit phase
The forest of Distributed Decision Trees constructs decision tree on a subset of data and it estimates all attributes in every tree node.

Predict phase
Each tree votes and algorithm selects prediction with most votes.

Reference
Similar algorithm is proposed in Gongqing Wu, Haiguang Li, Xuegang Hu, Yuanjun Bi, Jing Zhang, and Xindong Wu. MRec4.5: C4. 5 ensemble classification with mapreduce.

		Input: Dataset

		Parameter: Trees per subset (Number of trees per subset of data)

		Parameter: Max tree nodes (Max. number of decision tree nodes.)

		Parameter: Bootstrap sampling

		Parameter: Min samples to split (The minimum number of samples required to split an internal node)

		Parameter: Min samples in leaf (The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then min samples leaf samples)

		Parameter: Class majority (Purity of a subset.)

		Parameter: Measure (Select measure for estimation of attributes.)
		Possible values:
		Information gain

		Minimum description length

		Parameter: Discretization accuracy (Continuous attributes are converted to discrete intervals. For exact estimation use 0 (slowest) or increase the number to get an approximation (faster).)

		Parameter: Separate most present class

		Parameter: Random state

		Output: Fit model (Fit model URL)

		Example usage: Decision trees - lymphography [http://clowdflows.org/workflow/2727/]

Category Clustering

Widget: k-means

[image: _images/question-mark.png]
kmeans with MapReduce

The k-means is a partitional clustering technique that attempts to find a user-specified number of clusters k represented by their centroids.

		Input: Dataset

		Parameter: Number of clusters

		Parameter: Max number of iterations

		Parameter: Random state (Define a random state)

		Output: Fit model (Fit model URL)

		Example usage: k-means - segmentation [http://clowdflows.org/workflow/2811/]

Widget: k-Means predict

[image: _images/question-mark.png]

		Input: Fit model (Fit Model URL)

		Input: Dataset

		Output: Results

Category Regression

Widget: Linear regression

[image: _images/question-mark.png]
Linear regression with MapReduce

The linear regression fits theta parameters to training data.

Reference:
MapReduce version of algorithm is proposed by Cheng-Tao Chu; Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun. “Map-Reduce for Machine Learning on Multicore”. NIPS 2006.

		Input: Dataset

		Output: Fit model (Fit model URL)

		Example usage: Linear regression - linear [http://clowdflows.org/workflow/2815/]

Widget: Linear regression predict

[image: _images/question-mark.png]
The linear regression fits theta parameters to training data.

		Input: Fit model (Fit model URL.)

		Input: Dataset

		Output: Results

Widget: Locally weighted regression

[image: _images/question-mark.png]
Locally weighted linear regression with MapReduce

Reference:
MapReduce version of algorithm is proposed by Cheng-Tao Chu; Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun. “Map-Reduce for Machine Learning on Multicore”. NIPS 2006.

		Input: Training dataset (Define training dataset)

		Input: Fitting dataset (Define a dataset that will be fitted to training dataset.)

		Parameter: Tau (Parameter Tau controls how quickly the weight of a training example falls off with distance of its x(i) from the query point x)

		Output: Results

Category Evaluation

Widget: Apply Classifier

[image: _images/question-mark.png]
Widget takes a model on input and applies it on test data

		Input: Fit Model (Fit Model URL)

		Input: Dataset (dataset)

		Parameter: Naive Bayes - m estimate (m estimate)

		Parameter: Random forest - difference (Random forest calculates difference in probability between most and second most probable prediction. If difference is greater than parameter diff, it outputs prediction. If a test sample is hard to predict (difference is never higher than diff), it queries whole ensemble to make a prediction.)

		Parameter: Random forest - random state (Define a random state for predict phase.)

		Output: Results

		Example usage: Decision trees - lymphography [http://clowdflows.org/workflow/2727/]

Widget: Classification Accuracy

[image: _images/question-mark.png]

		Input: Results

		Input: Dataset

		Outputs: Popup window which shows widget’s results

		Example usage: Decision trees - lymphography [http://clowdflows.org/workflow/2727/]

Widget: Mean squared error

[image: _images/question-mark.png]

		Input: Results

		Input: Dataset

		Outputs: Popup window which shows widget’s results

		Example usage: Linear regression - linear [http://clowdflows.org/workflow/2815/]

Category Utilities

Widget: Model View

[image: _images/question-mark.png]
Widget takes a model on input and saves to a file that user can review.

		Input: Fit Model (Fit Model URL)

		Outputs: Popup window which shows widget’s results

		Example usage: Decision trees - lymphography [http://clowdflows.org/workflow/2727/]

Widget: Class distribution

[image: _images/question-mark.png]
Widget measures distribution of classes in subsets of data.

		Input: Dataset

		Outputs: Popup window which shows widget’s results

		Example usage: Naive Bayes - lymphography [http://clowdflows.org/workflow/2729/]

Widget: Input Dataset

[image: _images/question-mark.png]

		Parameter: Input URLs (Multiple URLs can be specified. An URL should be accessible via HTTP and not HTTPS.)

		Parameter: URL range (The URL range parameter is used with URLs that point to file chunks, named as xaaaa to xzzzz. This naming is provided by the unix split command. The first and last URL should be defined in the URLs text box. Intermediate URLs will be automatically generated.)

		Parameter: Gzipped data (Select if specified URLs point to data in gzipped format.)

		Parameter: Attribute selection (Select attributes that will processed.
Example: 1 - 10 for indices in the range from 1 to 10 or 1,2 for indices 1 and 2.)

		Parameter: Attribute metadata (Select numeric, if all attributes are numeric or discrete, if all attributes are discrete.
)
		Possible values:
		discrete

		metadata url

		numeric

		Parameter: Metadata URL (Define an URL of a file with attribute metadata.
Example of a file with 3 attributes, where first and second are continous and third is discrete:
atr1, atr2, atr3
c,c,d)

		Parameter: ID index (Define identifier index in the data.)

		Parameter: Class index (Define the class index in the dataset. If it is not defined, last attribute is used as the class.)

		Parameter: Delimiter (Define delimiter to parse the data.)

		Parameter: Missing values (Missing data values are skipped.
Example: ?,)

		Parameter: Class mapping (The class mapping defines a mapping for a binary class. It is used with Logistic regression and Linear SVM.
The Logistic regression classifier uses 0 and 1 as class. If the dataset contains discrete classes (e.g. healthy, sick), a mapping should be defined, where healthy is mapped to 1 and sick to 0. The class mapping is used only with binary target labels.
Example: healthy, sick)

		Output: Dataset

		Example usage: Random forest - segmentation [http://clowdflows.org/workflow/2731/]

Widget: Results View

[image: _images/question-mark.png]

		Input: Results (Results URL)

		Parameter: Additional parameters

		Outputs: Popup window which shows widget’s results

		Example usage: Decision trees - lymphography [http://clowdflows.org/workflow/2727/]

Category Bio3graph

Category Graph operations

Widget: Biomine graph visualizer

[image: _images/BiomineVisualizer.png]
Biomine graph visualizer which is run as a Java applet.

		Input: Biomine graph (Biomine graph as string.)

		Outputs: Popup window which shows widget’s results

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: Colour relations

[image: _images/question-mark.png]
Colours given relations in a given graph. Pink colour is used.

		Input: Network (NetworkX data structure)

		Input: Relations (List of relations)

		Output: Network (Network with relations coloured)

Widget: Construct triplet network

[image: _images/question-mark.png]
Constructs a network from input triplets. Biomine’s .bmg format as well as NetworkX data structure is produced.

		Input: Triplets (Input list of triplet objects)

		Output: NetworkX structure (NetworkX graph data structure.)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: Find transitive relations

[image: _images/question-mark.png]
Finds redundant transitive relations in the new network (which are already present in the given existing network).

		Input: Initial network (Initial network as a NetworkX data structure.)

		Input: New network (New network as a NetworkX data structure.)

		Output: Transitive relations (List of discovered transitive relations.)

Widget: Incremental merge of networks

[image: _images/question-mark.png]
Merges an exiting network and a new network and colours the relations accordingly: old: black colour, overlap: green colour, new: red colour.

		Input: Old network (Existing network as NetworkX data structure)

		Input: New network (New network as NetworkX data structure)

		Output: Merged network (Merged and coloured network as NetworkX data structure)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: Remove relations

[image: _images/question-mark.png]
Removes given relations from a given network.

		Input: NetworkX network (NetworkX data structure)

		Input: Relations (List of relations)

		Output: NetworkX network (Network with given relations removed.)

Widget: Reset colours

[image: _images/question-mark.png]
Resets colours of all relations to black.

		Input: Network (NetworkX data structure)

		Output: Network (NetworkX data structure)

Widget: Transform Biomine to NetworkX

[image: _images/question-mark.png]
Transforms a Biomine graph into a NetworkX data structure.

		Input: Biomine graph (Biomine graph as string)

		Output: NetworkX network (NetworkX network object)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: Transform NetworkX to Biomine

[image: _images/question-mark.png]
Converts NetworkX data structure into a Biomine graph.

		Input: NetworkX network (NetworkX data object)

		Output: Biomine graph (Biomine graph as string)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Category Transcriptomic analysis utilities

Widget: Construct compounds csv file from gene synonyms

[image: _images/question-mark.png]
Constructs a csv file from gene synonyms dictionary

		Input: gene synonyms (Dictionary of gene synonyms)

		Output: compoiunds csv (Bio3graph CSV file with gene synonyms as compounds)

Widget: Get gene synonyms from GPSDB

[image: _images/question-mark.png]
Obtains all synonyms of all genes using the GPSDB service.

		Input: gene symbol list (List of gene symbols)

		Output: gene synonyms (Dictionary of gene synonyms)

Widget: Map Entrez ID to NCBI symbol

[image: _images/question-mark.png]
Maps every Entrez gene ID in the input list to the corresponding NCBI gene symbol.

		Input: gene list (List of Entrez gene IDs)

		Output: gene symbol list (List of gene symbols)

Category Triplet extraction

Widget: Build default vocabulary

[image: _images/question-mark.png]
Constructs a default Bio3graph vocabulary.

		Output: Vocabulary (Bio3graph vocabulary structure.)

Widget: Export triplets to text

[image: _images/question-mark.png]
Exports the input list of triplet structures into text.

		Input: Triplets (Input list of triplet objects)

		Output: Triplet text (Triplets as text)

Widget: Build default vocabulary with custom compounds

[image: _images/question-mark.png]
Constructs a default Bio3graph vocabulary but with custom compounds.

		Input: Compounds (Compounds CSV file as string)

		Output: Vocabulary (Bio3graph vocabulary structure.)

Widget: Build vocabulary

[image: _images/question-mark.png]
Constructs a Bio3graph vocabulary for triplet extraction using the provided files.

		Input: Compounds (CSV file with compounds.)

		Input: Activation (CSV file with activations.)

		Input: Activation rotate (CSV file with activations for rotation.)

		Input: Inhibition (CSV file with inhibitions.)

		Input: Binding (CSV file with bindings.)

		Input: Activation passive (CSV file with passive forms of activation.)

		Input: Inhibition passive (CSV file with passive forms of inhibition.)

		Input: Binding passive (CSV file with passive forms of binding.)

		Output: Vocabulary (Bio3graph vocabulary data structure.)

Widget: Create document from file

[image: _images/question-mark.png]
Creates a document object structure from a given file.

		Input: Document file (Input document file)

		Output: Document object (Document object structure)

Widget: Create document from string

[image: _images/question-mark.png]
Creates a document object structure from a string.

		Input: Document string (Input document string)

		Output: Document object (Document object structure)

Widget: Extract triplets

[image: _images/question-mark.png]
Bio3graph triplet extraction method.

		Input: Document (Bio3graph document structure.)

		Input: Vocabulary (Bio3graph vocabulary structure.)

		Output: Triplets (A list of Bio3graph triplet structures.)

Widget: Normalise triplets

[image: _images/question-mark.png]
Normalises all triplets in the input list.

		Input: Triplets (List of triplet data structures.)

		Input: Vocabulary (Bio3graph vocabulary structure.)

		Output: Normalised triplets (List of normalised triplets.)

Widget: Parse sentences

[image: _images/question-mark.png]
Parses document sentences using the GENIA POS tagger.

		Input: Document (Bio3graph document structure with sentences splitted.)

		Output: Document (Bio3graph document structure with sentences parsed.)

Widget: Split sentences

[image: _images/question-mark.png]
Splits document text into sentences using NLTK’s Punkt sentence splitter.

		Input: Document (Bio3graph Document object)

		Output: Document (Bio3graph Document object with sentences splitted.)

Category PMC utilities

Widget: Filter non-OA PMC publications

[image: _images/question-mark.png]
Removes ids of non-open access publications from the input list

		Input: id list (List of document ids)

		Output: id list (Filtered list of document ids)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: Get XML of PMC article

[image: _images/question-mark.png]
Downloads the XML document of the give article(s).

		Input: id list (List of document ids)

		Output: list of XMLs (List of XMLs)

Widget: Get fulltext of PMC article

[image: _images/question-mark.png]
Downloads the full text of the given PMC article(s). Note: fulltext is available only for PMC OA subset!

		Input: id list (List of document ids)

		Output: fulltexts (List of fulltexts)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: XML to Fulltext

[image: _images/question-mark.png]
Create full texts of the given PMC article XMLs.

		Input: xml list (List of document xmls)

		Output: fulltexts (List of fulltexts)

Widget: Mesh filter

[image: _images/question-mark.png]

		Output: Term Filter file (Text file with all mesh terms)

Widget: Search PubMed Central

[image: _images/question-mark.png]
Performs a query to PubMed Central.

		Parameter: maxHits (max number of results (0 for inf))

		Parameter: query (PubMed query)

		Output: id list (List of document ids)

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Category Decision Support

Widget: Decision support charts

[image: _images/piechart.png]
Widgets which provides charts useful for decision support, making reports and overviewing data.

		Input: DS Model (Decision Support model)

		Outputs: Popup window which shows widget’s results

		Example usage: Decision support [http://clowdflows.org/workflow/383/]

Widget: Sensitivity analysis

[image: _images/sensitivity.png]
Interactive widget for sensitivity analysis: shows how each alternative’s score changes while changing the importance of one attribute.

		Input: DS model (model)

		Outputs: Popup window which shows widget’s results

		Example usage: Decision support [http://clowdflows.org/workflow/383/]

Widget: Weighted Sum Model

[image: _images/wsm.png]
Interactive widget for calculating a weighted sum of a vector of numbers.

		Input: Orange data table

		Output: Orange data table

		Output: WSM model

		Example usage: Decision support [http://clowdflows.org/workflow/383/]

Category Files

Widget: File to string

[image: _images/File.png]
Reads a file residing on the ClowdFlows server and outputs its contents.

		Input: File

		Output: String

		Example usage: Simple cross validation [http://clowdflows.org/workflow/1/]

Widget: Load big file

[image: _images/question-mark.png]
Uploads a big file to the ClowdFlows server.

		Parameter: File

		Output: File

Widget: Load file

[image: _images/Upload-icon.png]
Uploads a file to the ClowdFlows server. Outputs the file name on the server.

		Parameter: File

		Output: File

		Example usage: Simple cross validation [http://clowdflows.org/workflow/1/]

Widget: Load file to string

[image: _images/Upload-icon_1.png]
Uploads a file to the server and outputs its contents.

		Parameter: file

		Output: string

		Example usage: Build and display a J48 tree and cross validate it [http://clowdflows.org/workflow/465/]

Widget: String to file

[image: _images/1688041475.png]
Downloads a file containing data or results from the ClowdFlows server.

		Input: String

		Outputs: Popup window which shows widget’s results

		Example usage: ToTrTaLe [http://clowdflows.org/workflow/228/]

Category HBP

Widget: Interactive analysis

[image: _images/question-mark.png]

		Input: Dataset

		Output: Results (The results)

		Example usage: Interactive analysis (HBP use cases 3 & 4) [http://clowdflows.org/workflow/3568/]

Widget: Search criteria

[image: _images/question-mark.png]

		Output: Query (The query)

		Example usage: Epidemiological Exploration (HBP Use Case 1 & 2) [http://clowdflows.org/workflow/3349/]

Widget: Submit search criteria

[image: _images/question-mark.png]

		Input: Query

		Output: Results

		Example usage: Epidemiological Exploration (HBP Use Case 1 & 2) [http://clowdflows.org/workflow/3349/]

Category ILP

Category Semantic Data Mining

Widget: Hedwig

[image: _images/ilp.png]
A subgroup discovery tool that can use ontological domain knowledge (RDF graphs) in the learning process. Subgroup descriptions contain terms from the given domain knowledge and enable potentially better generalizations.

		Input: Examples (Learning examples)

		Input: Background knowledge (Background knowledge file (e.g., a n3 file))

		Parameter: Input format (Input file format of examples)
		Possible values:
		csv

		n3

		Parameter: Learner variant (Type of learner to use)
		Possible values:
		heuristic

		optimal

		Parameter: Score function
		Possible values:
		chisq

		leverage

		lift

		precision

		t_score

		wracc

		z_score

		Parameter: Minimum support (Minimum rule support)

		Parameter: Beam size

		Parameter: Rule depth (Maximum number of conjunctions)

		Parameter: Use negations (Use negations in rules)

		Parameter: Optimal subclass specialization (In each step the full hierarchy under a particular concept is searched)

		Parameter: P-value threshold (P-value threshold; applies if fwer is used)

		Parameter: Multiple-hypothesis testing correction method (Adjustment method for the multiple-testing problem)
		Possible values:
		fdr

		fwer

		Parameter: Maximum FDR rate (Max false discovery rate; applies if fdr is used)

		Parameter: Show URIs in rules (Show URIs in rule conjunctions)

		Output: Rules

Widget: 1BC

[image: _images/ilp.png]
1BC is a 1st-order logic naive Bayesian Classifier. It can deal with a relational database thanks to the Database To Prd and Fct files widget.

It takes several files as inputs. All of them should have the same name but different extensions :
- prd: this file contains the langage bias, roughly defining the target individual (i.e. primary table), the structural predicates (i.e. foreign keys between tables) and properties (i.e. other columns)
- fct: this file contains facts (i.e. lines of tables), often grouped into partitions by individuals (this grouping enable to use the incremental loading and learning).
- tst: actually it is another fact file that is used for testing the model learned from the fct file.

1BC outputs :
- res: It is a string that can be sent to the Display String widget or the String to file widget. It contains the interval limits for each discretised type if any, the conditional probabilities of all first-order features and the accuracy.
- scr: It is a string that can be sent to the Display String widget or to the Multiple Classes to One Binary Score widget to prepare a ROC curve. It lists, for each test instance, its identifier, its true class, and the predicted score for every classes.

1BC can be seen as a propositionalisation into elementary first-order features, similar to wordification, followed by a standard attribute-value naive bayesian classifier:
P. Flach, N. Lachiche. 1BC: A first-order bayesian classifier, Proceedings of the ninth international workshop on inductive logic programming (ILP‘99), pages 92-103, Saso Dzeroski and Peter Flach (Eds.), Springer, LNCS, Volume 1634, 1999, http://dx.doi.org/10.1007/3-540-48751-4_10
P. Flach, N. Lachiche. Naive Bayesian classification of structured data, Machine Learning, Springer Verlag (Germany) (IF : 1.689), pages 233–269, Volume 57, No 3, 2004, http://dx.doi.org/doi:10.1023/B:MACH.0000039778.69032.ab

		Input: prd file (from a Load file widget or a Database to Prd and Fct files widget)

		Input: fct file (from a Load file widget or a Database to Prd and Fct files widget (it contains the training set))

		Input: test file (from a Load file widget or a Database to Prd and Fct files widget (it is a fct file for testing))

		Parameter: max lit (The maximum number of literals. Usually the number of kinds of objects (i.e. tables) plus 1.)

		Parameter: max var (The maximum number of variables. Usually the number of kinds of objects (i.e. tables).)

		Parameter: load partitions incrementally (Load partitions (a partition contains all facts about an individual) incrementaly, useful when the training set is too to be loaded in one go)

		Parameter: cross validation folds (The number of folds to apply a cross-validation on the dataset (from the fct file))

		Parameter: random seed (An integer for initialising the random generator)

		Parameter: ROC nb folds (-1 if no ROC) (Number of folds to find the best threshold using an internal cross-validation according to ROC curve)

		Parameter: attribute List (Attribute name, Number of intervals the attribute has to be discretised in, and a kind of discretisation (sdm: standard deviation centered on the mean, eqb: equal bins)
Format: col1 nbIntervalCol1 sdm, col2 nbIntervalCol2 eqb)

		Output: results (to send to the Display String widget or a String to file widget)

		Output: score (to send to any widget for strings or to the Multiple Classes to One Binary Score widget to prepare a ROC curve.)

Widget: 1BC2

[image: _images/ilp.png]
1BC2 is a 1st-order logic naive Bayesian Classifier too. It can deal with a relational database thanks to the Database To Prd and Fct files widget.

It takes several files as inputs. All of them should have the same name but different extensions :
- prd: this file contains the langage bias, roughly defining the target individual (i.e. primary table), the structural predicates (i.e. foreign keys between tables) and properties (i.e. other columns)
- fct: this file contains facts (i.e. lines of tables), often grouped into partitions by individuals (this grouping enable to use the incremental loading and learning).
- tst: actually it is another fact file that is used for testing the model learned from the fct file.

1BC2 outputs :
- res: It is a string that can be sent to the Display String widget or the String to file widget. It contains the interval limits for each discretised type if any, the conditional probabilities of all first-order features and the accuracy.
- scr: It is a string that can be sent to the Display String widget or to the Multiple Classes to One Binary Score widget to prepare a ROC curve. It lists, for each test instance, its identifier, its true class, and the predicted score for every classes.

1BC2 estimates probabilities of sets of elements recursively:
N. Lachiche, P. Flach. 1BC2: a true first-order Bayesian classifier, Proceedings of the Thirteenth International Workshop on Inductive Logic Programming (ILP‘02), Sydney, Australia, pages 133-148, Claude Sammut and Stan Matwin (Eds.), Springer-Verlag, Lecture Notes in Artificial Intelligence, Volume 2583, January 2002, http://dx.doi.org/10.1007/3-540-36468-4₉
P. Flach, N. Lachiche. Naive Bayesian classification of structured data, Machine Learning, Springer Verlag (Germany) (IF : 1.689), pages 233–269, Volume 57, No 3, 2004, http://dx.doi.org/doi:10.1023/B:MACH.0000039778.69032.ab

		Input: prd file (from a Load file widget or a Database to Prd and Fct files widget)

		Input: fct file (from a Load file widget or a Database to Prd and Fct files widget (it contains the training set))

		Input: test file (from a Load file widget or a Database to Prd and Fct files widget (it is a fct file for testing))

		Parameter: max lit (The maximum number of literals. Usually the number of kinds of objects (i.e. tables) plus 1.)

		Parameter: max var (The maximum number of variables. Usually the number of kinds of objects (i.e. tables).)

		Parameter: load partitions incrementally (Load partitions (a partition contains all facts about an individual) incrementaly, useful when the training set is too to be loaded in one go)

		Parameter: cross validation folds (The number of folds to apply a cross-validation on the dataset (from the fct file))

		Parameter: random seed (An integer for initialising the random generator)

		Parameter: ROC nb folds (-1 if no ROC) (Number of folds to find the best threshold using an internal cross-validation according to ROC curve)

		Parameter: attribute List (Attribute name, Number of intervals the attribute has to be discretised in, and a kind of discretisation (sdm: standard deviation centered on the mean, eqb: equal bins)
Format: col1 nbIntervalCol1 sdm, col2 nbIntervalCol2 eqb)

		Output: results (to send to the Display String widget or a String to file widget)

		Output: score (to send to any widget for strings or to the Multiple Classes to One Binary Score widget to prepare a ROC curve.)

Widget: Aleph

[image: _images/ilp.png]
A widget which implements Aleph, an Inductive Logic Programming (ILP) system.
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

		Input: pos (positive examples)

		Input: neg (negative examples)

		Input: b (background knowledge)

		Input: settings (settings facts)

		Parameter: mode (induction mode)
		Possible values:
		induce

		induce_constraints

		induce_cover

		induce_features

		induce_max

		induce_modes

		induce_tree

		Parameter: minpos (Set a lower bound on the number of positive examples to be covered by an acceptable clause. If the best clause covers positive examples below this number, then it is not added to the current theory. This can be used to prevent Aleph from adding ground unit clauses to the theory (by setting the value to 2).)

		Parameter: noise (Set an upper bound on the number of negative examples allowed to be covered by an acceptable clause.)

		Parameter: clauselength (Sets upper bound on number of literals in an acceptable clause.)

		Parameter: depth (Sets an upper bound on the proof depth to which theorem-proving proceeds.)

		Parameter: evalfn (Sets the evaluation function for a search.)
		Possible values:
		accuracy

		auto_m

		compression

		coverage

		entropy

		gini

		laplace

		mestimate

		pbayes

		posonly

		sd

		wracc

		Parameter: i (Set upper bound on layers of new variables.)

		Parameter: language (Specifies the number of occurences of a predicate symbol in any clause (inf or > 0).)

		Parameter: m (Sets a value for “m-estimate” calculations.)

		Parameter: max_features (Sets an upper bound on the maximum number of boolean features constructed by searching for good clauses (inf or > 0).)

		Output: theory

		Example usage: ILP - Aleph [http://clowdflows.org/workflow/480/]

Widget: Caraf

[image: _images/ilp.png]
More information about Caraf is available here:
https://link.springer.com/chapter/10.1007/978-3-319-23708-4_4#page-1

		Input: Prd file

		Input: Fct file

		Parameter: Test file

		Parameter: Cross Validation Folds

		Parameter: Random Seed

		Parameter: Forest Size

		Parameter: Min Leaf Size

		Parameter: Heuristic
		Possible values:
		Global

		RRHCCA

		Random

		Parameter: Target Predicate

		Parameter: Count

		Parameter: Minimum

		Parameter: Maximum

		Parameter: Sum

		Parameter: Mean

		Parameter: Ratio

		Parameter: Standard Deviation

		Parameter: Median

		Parameter: First Quartile

		Parameter: Third Quartile

		Parameter: Interquartile Range

		Parameter: First Decile

		Parameter: Ninth Decile

		Output: Model file

		Output: Eval file

		Output: Predictions file

Widget: Cardinalization

[image: _images/ilp.png]
A propositionalistion algorithm that takes a Database Context widget as input and outputs a context that can be used by any of the Database to (Aleph, Orange Table, Prd and Fct files, RSD, TreeLiker, …) widgets.

The ouput context points to a new table generated by the algorithm.

Cardinalization adds columns to the target table related to every numeric attributes of the secondary table as detailed in :
C. Ahmed, N. Lachiche, C. Charnay, S. El Jelali, A. Braud. Flexible Propositionalization of Continuous Attributes in Relational Data Mining, Expert Systems with Applications, Elsevier (IF : 1.965), pages 7698–7709, Volume 42, No 21, November 2015, http://dx.doi.org/10.1016/j.eswa.2015.05.053
S. El Jelali, A. Braud, N. Lachiche. Propositionalisation of continuous attributes beyond simple aggregation, 22nd International Conference on Inductive Logic Programming (ILP 2012), Croatia, pages 32–44, Fabrizio Riguzzi and Filip Zelezny (Eds.), Springer, Lecture Notes in Computer Science, Volume 7842, March 2013, http://dx.doi.org/10.1007/978-3-642-38812-5_3

		Input: context (from a Database Context widget)

		Parameter: threshold number

		Output: context (to a Database to *** widget)

Widget: Quantiles

[image: _images/ilp.png]
A propositionalistion algorithm that takes a Database Context widget as input and outputs a context that can be used by any of the Database to (Aleph, Orange Table, Prd and Fct files, RSD, TreeLiker, …) widgets.

The ouput context points to a new table generated by the algorithm.

The required number of quantiles are computed for each numeric attribute of the secondary table as detailed in :
C. Ahmed, N. Lachiche, C. Charnay, S. El Jelali, A. Braud. Flexible Propositionalization of Continuous Attributes in Relational Data Mining, Expert Systems with Applications, Elsevier (IF : 1.965), pages 7698–7709, Volume 42, No 21, November 2015, http://dx.doi.org/10.1016/j.eswa.2015.05.053
S. El Jelali, A. Braud, N. Lachiche. Propositionalisation of continuous attributes beyond simple aggregation, 22nd International Conference on Inductive Logic Programming (ILP 2012), Croatia, pages 32–44, Fabrizio Riguzzi and Filip Zelezny (Eds.), Springer, Lecture Notes in Computer Science, Volume 7842, March 2013, http://dx.doi.org/10.1007/978-3-642-38812-5_3

		Input: Context (from a Database Context widget)

		Parameter: Number of quantiles (Number of quantiles that will be generated for each numeric attribute of the secondary table)

		Output: context (to a Database to *** widget)

Widget: RSD

[image: _images/ilp.png]
Relational subgroup discovery by Zelezny et al.

		Input: examples (classified examples (pos+neg in one file))

		Input: b (background knowledge)

		Input: pos (positive examples)

		Input: neg (negative examples)

		Input: settings

		Parameter: clauselength (An integer specifying the maximum length of a feature
body.)

		Parameter: depth (An integer specifying the maximum depth of variables
found in a feature body.)

		Parameter: negation (One of now, later, none.
now: To features generated by featurize.pl, process.pl
will also add their versions where the complete body is
negated. (Negations of individual literals can be done by
suitably defining background knowledge predicates.)
later: tells the program that an inducer capable of
negating features will be applied on the propositionalized
representation. This influences functions described below.)
		Possible values:
		later

		none

		now

		Parameter: min_coverage (An integer mc. All features (including negated versions)
covering fewer than mc instances will be discarded.
However, if negation is later (see above), a feature
is discarded only if both (a) coverage thereof and (b) the
coverage of its negated version are smaller than mc.)

		Parameter: filtering (One of true, false. If true, each feature will be discarded
if (a) it covers the same set of instances as some previously
constructed feature, or (b) it covers all instances.)
		Possible values:
		false

		true

		Parameter: subgroups (find subgroups as well)

		Output: features (features as prolog facts)

		Output: arff (arff file of the propositionalized data)

		Output: rules (rules as prolog facts)

		Example usage: ILP - RSD using MySQL (ECML demo) [http://clowdflows.org/workflow/611/]

Widget: Relaggs

[image: _images/ilp.png]
A propositionalistion algorithm that takes a Database Context widget as input and outputs a context that can be used by any of the Database to (Aleph, Orange Table, Prd and Fct files, RSD, TreeLiker, …) widgets.

The ouput context points to a new table generated by the algorithm.

Relaggs applies the usual aggregation functions (min, max, …) to every attributes of the secondary table as detailed in :
Mark-A. Krogel, Stefan Wrobel:Transformation-Based Learning Using Multirelational Aggregation. ILP 2001: 142-155, http://dx.doi.org/10.1007/3-540-44797-0_12

		Input: context (from a Database Context widget)

		Output: context (to a Database to *** widget)

Widget: SDM-Aleph

[image: _images/ws.png]
SDM-Aleph web service.

		Inputs:

		
		examples: str, a .tab dataset or a list of pairs

		mapping : str, a mapping between examples and ontological terms,

		ontologies : a list of {‘ontology’ : str} dicts

		relations : a list of {‘relation’ : str} dicts

		posClassVal : str, if the data is class-labeled, this is the target class,

		cutoff : int, if the data is ranked, this is the cutoff value for splitting it into two classes,

		minPos : int >= 1, minimum number of true positives per rule

		noise : int > 0, false positives allowed per rule

		clauseLen : int >= 1, number of predicates per clause,

		dataFormat : str, legal values are ‘tab’ or ‘list’

		Output:

		
		str, the induced theory.

@author: Anze Vavpetic, 2011 <anze.vavpetic@ijs.si>

		Input: examples

		Input: mapping (mapping from ontology concepts to examples)

		Input: ontology (ontologies)

		Input: relation (extra relations)

		Parameter: positive class val (positive class value)

		Parameter: cutoff (cutoff point for unlabeled data)

		Parameter: minimum TP (min TP examples per rule)

		Parameter: maximum FP (max FP examples per rule)

		Parameter: clause length (max predicates per rule)

		Parameter: data format (data format (tab or list))

		Output: theory (the induced theory)

		Example usage: SDM-Aleph example [http://clowdflows.org/workflow/680/]

Widget: SDM-SEGS

[image: _images/question-mark.png]
SDM-SEGS web service.

		Inputs:

		
		inputData: str, a .tab dataset or a (pythonish) list of pairs

		interactions: str, list of interacting examples,

		mapping : str, a mapping between examples and ontological terms,

		ont1-4 : str, ontologies in OWL (legacy=false), or in SEGS’s format (legacy=true)

		generalTerms : str, terms that are too general (each in new line),

		legacy : bool, turns on SEGS mode,

		posClassVal : str, if the data is class-labeled, this is the target class,

		cutoff : int, if the data is ranked, this is the cutoff value for splitting it into two classes,

		wracc_k : int, number of times an example can be covered when selecting with WRAcc,

		minimalSetSize : int, minimum number of covered examples,

		maxNumTerms : int, maximum number of conjunctions in one rule,

		maxReported : int, number of returned rules,

		maximalPvalue : float, maximum p-value of a returned rule,

		weightFisher, weightGSEA, weightPAGE : float, weights for corresponding score functions; makes sense only if legacy = false,

		dataFormat : str, legal values are ‘tab’ or ‘list’

		Output:

		
		json dictionary encoding the discovered rules.

Note: See http://kt.ijs.si/software/SEGS/ for legacy format specification.

@author: Anze Vavpetic, 2011 <anze.vavpetic@ijs.si>

		Input: ont3

		Input: ont2

		Input: ont1

		Input: generalTerms

		Input: interactions

		Input: ont4

		Input: mapping

		Input: inputData

		Parameter: Timeout

		Parameter: Send empty strings to webservices

		Parameter: maxNumTerms

		Parameter: weightGSEA

		Parameter: wracc_k

		Parameter: maximalPvalue

		Parameter: legacy

		Parameter: maxReported

		Parameter: dataFormat

		Parameter: minimalSetSize

		Parameter: weightFisher

		Parameter: posClassVal

		Parameter: cutoff

		Parameter: weightPAGE

		Output: rules

		Example usage: SDM-SEGS example [http://clowdflows.org/workflow/575/]

Widget: SDM-SEGS Rule Viewer

[image: _images/ilp.png]
Displays SDM-SEGS rules.

		Input: SDM-SEGS rules

		Outputs: Popup window which shows widget’s results

		Example usage: SDM-SEGS example [http://clowdflows.org/workflow/575/]

Widget: Tertius

[image: ../../mothra_master_fordoc/workflows/static/widget-icons/question-mark.png]
Tertius learns rules in first-order logic. It can deal with a relational database thanks to the Database To Prd and Fct files widget.

It takes several files as inputs. All of them should have the same name but different extensions:
- prd: this file contains the langage bias, roughly defining the target individual (i.e. primary table), the structural predicates (i.e. foreign keys between tables) and properties (i.e. other columns)
- fct: this file contains facts (i.e. lines of tables), often grouped into partitions by individuals (this grouping enable to use the incremental loading and learning).

It outputs its results as a string that can be sent to the Display String widget or String to file widget.

It is an supervised learner that learns rules having the best confirmation as explained in:
P. Flach, N. Lachiche. Confirmation-Guided Discovery of First-Order Rules with Tertius, Machine Learning, Springer Verlag (Germany) (IF : 1.689), pages 61–95, Volume 42, No 1/2, 2001, doi:10.1023/A:1007656703224

Several langage biases can be selected, namely :
- none
- Horn clauses only
- class : use the first property of the prd file as head of rules
- pos class : use the first property of the prd file as a positive literal in the head of rules
- pos horn class : use the first property of the prd file as a positive literal in the head of horn clauses

		Input: prd file (from a Load file widget or a Database to Prd and Fct files widget)

		Input: fct file (from a Load file widget or a Database to Prd and Fct files widget (it contains the training set))

		Parameter: max lit (The maximum number of literals)

		Parameter: max var (The maximum number of variables)

		Parameter: noise percent threshold (-1 if not used) (Noise Percent Threshold)

		Parameter: satisfied clauses only (Satisfied clauses only)

		Parameter: language bias (Language bias)
		Possible values:
		Class

		Horn

		None

		Pos Class

		Pos Horn Class

		Parameter: number of results (-1 if conf. thres.) (Number of results (-1 if the confirmation threshold is used))

		Parameter: confirmation threshold (-1 if nb. results) (Minimum threshold on the confirmation (-1 if Number of Results is used))

		Parameter: nb. of structural results (-1 if not used) (Switch the use of the ISP (Individual, Structural, Properties in the prd file) declarations on, and set the maximum number of properties in an hypothesis (-1 if not used))

		Parameter: count instances in a bottom-up manner (Count instances in a bottom-up manner)

		Parameter: attribute list (Attribute name, Number of intervals the attribute has to be discretised in, and a kind of discretisation (sdm: standard deviation centered on the mean, eqb: equal bins)
Format: col1 nbIntervalCol1 sdm, col2 nbIntervalCol2 eqb)

		Output: results (to send to the Display String widget or a String to file widget)

Widget: TreeLiker

[image: _images/ilp.png]

		Input: Template (Feature template)

		Input: Dataset (Dataset in TreeLiker format)

		Parameter: Algorithm
		Possible values:
		HiFi

		HiFi with grounding counting

		Poly

		Poly with grounding counting

		RelF

		RelF with grounding counting

		Parameter: Minimum frequency

		Parameter: Maximum size of features (applies to HiFi and Poly algs)

		Parameter: Covered class (applies only to the RelF algorithm)

		Parameter: Use sampling (Use sampling mode)

		Parameter: Sample size

		Parameter: Max polynomial degree (applies to Poly)

		Output: Dataset (Arff dataset)

		Example usage: Wordification evaluation workflow [http://clowdflows.org/workflow/1456/]

Widget: Wordification

[image: _images/ilp.png]
Widget which performs transformation of a relational database into a corpus of documents, where each document can be characterized by a set of properties describing the entries of a relational database.

		Input: target_table (Orange data table)

		Input: other_tables (List of Orange data tables)

		Input: context (Context)

		Input: Inverse Document Frequencies (Inverse Document Frequencies which will be used for feature calculation.)

		Parameter: Weighting Measure (Term Weighting Measure)
		Possible values:
		Term Frequency

		TF-IDF

		Parameter: feature n-grams (Construct words out of upto n features)

		Output: Document corpus (Result of wordification for main target table)

		Output: Arff table with TF-IDF values

		Output: Inverse Document Frequencies (Calculated Inverse Document Frequencies)

		Example usage: Example wordification workflow [http://clowdflows.org/workflow/1455/]

Category Integers

Widget: Add integers

[image: _images/d914a910.png]
Adds two integers

		Input: Integer 1

		Input: Integer 2

		Output: Integer

		Example usage: Simple arithmetics [http://clowdflows.org/workflow/9/]

Widget: Add multiple integers

[image: _images/d914a910_2.png]
Adds multiple integers and outputs their sum

		Input: Integer List

		Output: Sum

Widget: Create Integer

[image: _images/417px-Latex_integers.svg.png]
Creates an integer object from a parameter.

		Parameter: Type your integer

		Output: Integer (The returned integer.)

		Example usage: Simple arithmetics [http://clowdflows.org/workflow/9/]

Widget: Filter integers

[image: _images/question-mark.png]
Filters some integers

		Input: Integer List

		Output: Integer list

Widget: Multiply integers

[image: _images/question-mark.png]
Multiplies integers and outputs their product

		Input: Integers

		Output: Integer

Widget: Subtract integers

[image: _images/d914a910_1.png]
Subtracts two integers

		Input: Integer 1

		Input: Integer 2

		Output: Integer

		Example usage: Simple arithmetics [http://clowdflows.org/workflow/9/]

Category MUSE

Category 3D virtual environment

Widget: Tuk the Hunter 3D demonstrator

[image: _images/question-mark.png]
3D demonstrator for the Tuk the Hunter children story

		Input: mapping file URL (A link to the XML file contating mapping to knowledge representation)

		Parameter: Unity3D app link (A link to the Tuk Unity3D web app)

		Outputs: Popup window which shows widget’s results

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: Tuk the Hunter 3D demonstrator (local)

[image: _images/question-mark.png]
Local copyt of the 3D demonstrator for the Tuk the Hunter children story

		Input: mapping file URL (A link to the XML file contating mapping to knowledge representation)

		Parameter: Unity3D app link (A link to the Tuk Unity3D web app)

		Outputs: Popup window which shows widget’s results

		Example usage: MUSE Leiden demo [http://clowdflows.org/workflow/3116/]

Widget: Virtual environment visualization

[image: _images/question-mark.png]

		Input: NLP data (Results of NLP processing)

		Input: Server link (Link to the Unity3D server)

		Outputs: Popup window which shows widget’s results

		Example usage: MUSE workflow (Tuk story) [http://clowdflows.org/workflow/2091/]

Category NLP components

Widget: Event extraction

[image: _images/question-mark.png]
Calls the LIIR NLP annotation (TERENCE NLP service)

		Input: Raw text (Input document as raw text)

		Output: Annotated text (XML document with all annotations)

Widget: Mapping to Knowledge representation

[image: _images/question-mark.png]
Calls the mapping to knowledge representation service

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

Widget: Mapping to Knowledge representation

[image: _images/question-mark.png]
Calls the mapping to knowledge representation service

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

Widget: Mapping to Knowledge representation (latest)

[image: _images/question-mark.png]
Calls the mapping to knowledge representation service

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

		Output: XML with results

		Example usage: MUSE workflow (Tuk story) V2 [http://clowdflows.org/workflow/2575/]

Widget: Mapping to Knowledge representation (precomputed, latest)

[image: _images/question-mark.png]
Returns the precomputed mapping to knowledge representation for Tuk story

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

		Output: XML with results

		Example usage: MUSE workflow (Tuk story) V2 - precomputed [http://clowdflows.org/workflow/2675/]

Widget: Mapping to Knowledge representation (precomputed)

[image: _images/question-mark.png]
Returns the precomputed mapping to knowledge representation for Tuk story

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

Widget: Mapping to Knowledge representation (Tuk, precomputed)

[image: _images/question-mark.png]
Returns the precomputed mapping to knowledge representation for Tuk story

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

		Example usage: MUSE workflow (Tuk story) [http://clowdflows.org/workflow/2091/]

Widget: Mapping to KR golden standard

[image: _images/question-mark.png]
A link to the golden standard XML file for mapping to KR

		Output: Link (Link to the golden standard for mapping to KR)

Widget: Semantic role labeling

[image: _images/question-mark.png]
Calls the semantic role labeling service

		Input: Input XML (MUSE XML file)

		Parameter: Service url (URL of the MUSE service)

		Output: Output XML (XML with semantic roles added)

		Output: Input for KR (Input text file for mapping to knowledge representation)

		Example usage: MUSE workflow (Tuk story) [http://clowdflows.org/workflow/2091/]

Widget: Semantic role labeling (Tuk specific)

[image: _images/question-mark.png]
Calls the semantic role labeling service

		Input: Input XML (MUSE XML file)

		Parameter: Service url (URL of the MUSE service)

		Output: Output XML (XML with semantic roles added)

		Output: Input for KR (Input text file for mapping to knowledge representation)

		Example usage: MUSE workflow (Tuk story) V2 [http://clowdflows.org/workflow/2575/]

Widget: Syntactic and semantic processing

[image: _images/question-mark.png]
Calls the LIIR NLP annotation (TERENCE NLP service)

		Input: Raw text (Input document as raw text)

		Output: Annotated text (XML document with all annotations)

		Example usage: MUSE workflow (Tuk story) [http://clowdflows.org/workflow/2091/]

Category Utilities

Widget: String to statically hosted file

[image: _images/question-mark.png]
Creates a statically served file from the given (text) content.

		Input: Input data (Input data as string)

		Parameter: File extension (Extension of the static file)

		Output: Link (Link to the statically hosted file)

		Example usage: MUSE Leiden demo [http://clowdflows.org/workflow/3116/]

Widget: View XML

[image: _images/question-mark.png]
Displays XML in a modal window

		Input: XML document (XML document as string)

		Outputs: Popup window which shows widget’s results

		Example usage: MUSE workflow (Tuk story) [http://clowdflows.org/workflow/2091/]

Category MUSE_v3

Category 3D virtual environment

Widget: Tuk the Hunter 3D demonstrator

[image: _images/question-mark.png]
3D demonstrator for the Tuk the Hunter children story

		Input: mapping file URL (A link to the XML file contating mapping to knowledge representation)

		Parameter: Unity3D app link (A link to the Tuk Unity3D web app)

		Outputs: Popup window which shows widget’s results

Widget: Tuk the Hunter 3D demonstrator (local)

[image: _images/question-mark.png]
Local copy of the 3D demonstrator for the Tuk the Hunter children story

		Input: mapping file URL (A link to the XML file contating mapping to knowledge representation)

		Parameter: Unity3D app link (A link to the Tuk Unity3D web app)

		Outputs: Popup window which shows widget’s results

Category NLP components

Widget: Coreference resolution

[image: _images/question-mark.png]
This function performs coreference resolution on tokenised text.

		Input: Tokens (Tokenised text)

		Parameter: Service url (URL of the MUSE service)

		Output: Coreferences (Coreferences found in the input tokenised text)

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: Direct speech detection

[image: _images/question-mark.png]
Detection of direct speech.

		Input: Semantic role labels (Tokenised sentences with semantic roles)

		Input: Coreferences (Coreferences as produced by the coreference function)

		Input: Entities (Entities for direct speech detection)

		Parameter: Service url (URL of the MUSE service)

		Output: Direct speech (Detected direct speech)

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: Event and temporal relation detection

[image: _images/question-mark.png]
This function is used to detect events and temporal relations between these events

		Input: Raw text (Input text file)

		Parameter: Service url (URL of the MUSE service)

		Output: Events and temporal relations (XML file with results)

Widget: Mapping to Knowledge representation

[image: _images/question-mark.png]
Calls the mapping to knowledge representation service

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

		Output: XML with results

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: Mapping to Knowledge representation (precomputed)

[image: _images/question-mark.png]
Returns the precomputed mapping to knowledge representation for Tuk story

		Input: Input data (Plain text file with special annotations)

		Parameter: Service url (URL of the MUSE service)

		Output: Instantiated event templates (Instantiated event-templates with argument roles as defined in the domain.
)

		Output: XML with results

Widget: Prepare input for KR mapping

[image: _images/question-mark.png]
This function prepares the input for the mapping to knowledge representation function.

		Input: Processed SRL (SRL with pronoun resolution)

		Input: Direct speech (Detected direct speech)

		Parameter: Service url (URL of the MUSE service)

		Output: KR input (Input for knowledge representation mapping)

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: Preprocessing

[image: _images/question-mark.png]
Preprocessing of raw text

		Input: Raw text (Input text file)

		Parameter: Service url (URL of the MUSE service)

		Output: Tokens (Tokenised text)

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Widget: Semantic role labelling

[image: _images/question-mark.png]
This function performs semantic role labelling on tokenised text.

		Input: Tokens (Tokenised text)

		Parameter: Service url (URL of the MUSE service)

		Output: Semantic role labels (Tokenised sentences with semantic roles and other information)

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: SRL pronoun resolution

[image: _images/question-mark.png]
Pronoun resolution (a preparation for producing mapping)

		Input: Coreferences (Coreferences as produced by the coreference function)

		Input: Entities (Entities for direct speech detection)

		Input: Semantic role labels (Tokenised sentences with semantic roles)

		Parameter: Service url (URL of the MUSE service)

		Output: Processed SRL (SRL with pronoun resolution)

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Category NLP components (PG)

Widget: G-DEE (text)

[image: _images/question-mark.png]
This function calls the command line version of G-DEE (a document engineering environment for clinical guidelines).

		Input: Text (Medical guidelines text as string)

		Parameter: Service url (URL of the MUSE service)

		Parameter: Language (Language (en or fr))
		Possible values:
		French

		Output: Annotations (XML document with anotations)

		Example usage: MUSE workflow: patient guidelines [http://clowdflows.org/workflow/5164/]

Widget: G-DEE (url)

[image: _images/question-mark.png]
This function calls the command line version of G-DEE (a document engineering environment for clinical guidelines).

		Input: URL (URL of the medical guidelines document)

		Parameter: Language (Language (en or fr))

		Parameter: Service url (URL of the MUSE service)

		Output: Annotations (XML document with anotations)

		Example usage: MUSE workflow: patient guidelines [http://clowdflows.org/workflow/5164/]

Widget: PG coreference resolution

[image: _images/question-mark.png]
This function provide coreference resolution.

		Input: Tokens (Tokenised text)

		Parameter: Service url (URL of the MUSE service)

		Output: Coreferences (Coreferences found in the input tokenised text)

		Output: Preprocessed (A file containing tokens with additional preprocessing information.)

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Widget: PG event and temporal relation detection

[image: _images/question-mark.png]
This function is used to detect events and temporal relations between these events

		Input: Preprocessed (A file containing tokens with additional preprocessing information)

		Parameter: Service url (URL of the MUSE service)

		Output: Events and temporal relations (XML file with results)

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Widget: PG mapping

[image: _images/question-mark.png]
This function performs mapping of the patient guideline text and its linguistic annotations to the set of templates provided by Teesside University. Developed @ KUL.

		Input: Semantic role labels (Tokenised sentences with semantic roles)

		Input: Coreferences (Coreferences as produced by the coreference function)

		Input: Events and temporal relations (Events and temporal relations between these events)

		Input: Text structure (Recognised text structure)

		Parameter: Service url (URL of the MUSE service)

		Output: Mapping (XML file which maps the text to the template (defined at TEES))

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Widget: PG preprocessing

[image: _images/question-mark.png]
This function is used to tokenise text and detect information about its structure

		Input: Raw text (Input text file)

		Parameter: Service url (URL of the MUSE service)

		Output: Tokens (Tokenised text)

		Output: Text structure (Recognised text structure)

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Widget: PG semantic role labelling

[image: _images/question-mark.png]
This function performs semantic role labelling on tokenised text for patient guidelines.

		Input: Tokens (Tokenised text)

		Parameter: Service url (URL of the MUSE service)

		Output: Semantic role labels (Tokenised sentences with semantic roles and other information)

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Category Utilities

Widget: String to statically hosted file

[image: _images/question-mark.png]
Creates a statically served file from the given (text) content.

		Input: Input data (Input data as string)

		Parameter: File extension (Extension of the static file)

		Output: Link (Link to the statically hosted file)

		Example usage: MUSE workflow: Tuk story V3 (final) [http://clowdflows.org/workflow/4109/]

Widget: View XML

[image: _images/question-mark.png]
Displays XML in a modal window

		Input: XML document (XML document as string)

		Outputs: Popup window which shows widget’s results

		Example usage: MUSE workflow: Tuk story V3 (final) - IJCAI [http://clowdflows.org/workflow/4731/]

Category MySQL

Category Domain mapping

Widget: Map examples to domain (Aleph features)

[image: _images/mysql.png]

		Input: positive class

		Input: training data (context) (training context)

		Input: test data (context) (new examples’ context)

		Input: features (domain features)

		Parameter: format (output format)

		Output: evaluations (features evaluated on the test data)

Widget: Map examples to domain (RSD)

[image: _images/mysql.png]

		Input: training data (context) (training context)

		Input: test data (context) (new examples’ context)

		Input: features (domain features)

		Parameter: format (output format)
		Possible values:
		CSV

		Weka ARFF

		Output: evaluations (features evaluated on the test data)

Widget: Map examples to domain (TreeLiker)

[image: _images/mysql.png]

		Input: training data (context) (training context)

		Input: test data (context) (new examples’ context)

		Input: features (domain features)

		Parameter: format (output format)
		Possible values:
		ARFF

		CSV

		Output: evaluations (features evaluated on the test data)

Widget: Database Context

[image: _images/mysql.png]

		Input: connection

		Parameter: Table connection from names (Tries to detect connections between tables solely by looking at the attribute names.)

		Output: context

		Example usage: ILP - RSD using MySQL (ECML demo) [http://clowdflows.org/workflow/611/]

Widget: Database To Aleph

[image: _images/mysql.png]

		Input: discretization intervals (dictionary of intervals for discretization)

		Input: context (Database context object)

		Parameter: dump full database (dump full database to prolog)

		Parameter: Target attribute value (Target attribute value to be used as the positive class)

		Output: positive examples (positive examples file)

		Output: negative examples (negative examples file)

		Output: background knowledge

		Example usage: ILP - Aleph [http://clowdflows.org/workflow/480/]

Widget: Database To Orange Table

[image: _images/mysql.png]

		Input: context (Database context object)

		Output: Data table (Orange data table)

		Output: List of Data tables (List of Orange data tables)

Widget: Database To RSD

[image: _images/mysql.png]

		Input: context (Database context object)

		Input: discretization intervals (dictionary of intervals for discretization)

		Parameter: dump full database

		Output: examples

		Output: background knowledge

		Example usage: Wordification evaluation workflow [http://clowdflows.org/workflow/1456/]

Widget: Database To TreeLiker

[image: _images/mysql.png]

		Input: context (Database context object)

		Input: discretization intervals (dictionary of intervals for discretization)

		Output: dataset

		Output: template

		Example usage: Wordification evaluation workflow [http://clowdflows.org/workflow/1456/]

Widget: MySQL Connect

[image: _images/mysql.png]

		Parameter: user

		Parameter: password

		Parameter: host

		Parameter: database

		Output: connection

		Example usage: ILP - RSD using MySQL (ECML demo) [http://clowdflows.org/workflow/611/]

Category NLP

Category Definition extraction

Widget: Definition extraction by patterns

[image: _images/nlp.png]

		Input: Annotations (Totrtale annotations)

		Parameter: Web service address

		Parameter: Language
		Possible values:
		English

		Slovene

		Parameter: Pre-defined patterns
		Possible values:
		Begin allvar

		Begin novar

		No begin

		Output: Sentences (Definition sentences)

		Example usage: Definition extraction (Senja Pollak et al) - improved [http://clowdflows.org/workflow/1380/]

Widget: Definition extraction by patterns2

[image: _images/nlp.png]

		Input: Annotations (Totrtale annotations)

		Parameter: Pre-defined patterns
		Possible values:
		Begin allvar

		Begin novar

		No begin

		Parameter: Language
		Possible values:
		English

		Slovene

		Output: Sentences (Definition sentences)

Widget: Definition extraction by terms

[image: _images/nlp.png]

		Input: Candidates (Term candidates)

		Input: Annotations (Totrtale annotations)

		Parameter: Web service address

		Parameter: Language
		Possible values:
		English

		Slovene

		Parameter: Terms per sentence

		Parameter: Nominatives (only for slovene) (Nominatives)
		Possible values:
		0

		1

		2

		Parameter: Threshold top % terms (Threshold)

		Parameter: Verb between two terms
		Possible values:
		Between all

		None

		Only between first two terms

		Parameter: First term should be a multi-word term

		Parameter: Multi-terms in a sentence

		Parameter: One term should occur at the beginning of the sentence

		Output: Sentences (Definition sentences)

		Example usage: Definition extraction (Senja Pollak et al) - improved [http://clowdflows.org/workflow/1380/]

Widget: Definition extraction by terms2

[image: _images/nlp.png]

		Input: Candidates (Term candidates)

		Input: Annotations (Totrtale annotations)

		Parameter: Language
		Possible values:
		English

		Slovene

		Parameter: Terms per sentence

		Parameter: Nominatives
		Possible values:
		0

		1

		2

		Parameter: Threshold top % terms (Threshold)

		Parameter: Verb between two terms
		Possible values:
		Between all

		None

		Only between first two terms

		Parameter: First term should be a multi-word term

		Parameter: Multi-terms in a sentence

		Parameter: One term should occur at the beginning of the sentence

		Output: Sentences (Definition sentences)

Widget: Definition extraction by wordnet

[image: _images/nlp.png]

		Input: Annotations (Totrtale annotations)

		Parameter: Web service address

		Parameter: Language
		Possible values:
		English

		Slovene

		Output: Sentences (Definition sentences)

		Example usage: Definition extraction (Senja Pollak et al) - improved [http://clowdflows.org/workflow/1380/]

Widget: Definition extraction by wordnet2

[image: _images/nlp.png]

		Input: Annotations (Totrtale annotations)

		Parameter: Language
		Possible values:
		English

		Slovene

		Output: Sentences (Definition sentences)

Widget: Merge sentences

[image: _images/nlp.png]

		Input: Sentences

		Parameter: Method
		Possible values:
		Intersection

		Intersection by two

		Union

		Output: Merged Sentences

Widget: Merge sentences

[image: _images/nlp.png]

		Input: Sentences

		Parameter: Join Method
		Possible values:
		Intersection

		Intersection by at least two

		Union

		Output: Merged Sentences

		Example usage: Definition extraction (by S. Pollak et al.) [http://clowdflows.org/workflow/76/]

Widget: Merge sentences2

[image: _images/nlp.png]

		Input: Sentences

		Parameter: Method
		Possible values:
		Intersection

		Intersection by two

		Union

		Output: Merged Sentences

Widget: Sentence viewer

[image: _images/nlp.png]

		Input: candidates

		Outputs: Popup window which shows widget’s results

		Example usage: Definition extraction (by S. Pollak et al.) [http://clowdflows.org/workflow/76/]

Widget: Sentence viewer2

[image: _images/nlp.png]

		Input: candidates

		Parameter: Show sentence IDs

		Parameter: Show article IDs

		Parameter: Show sentences

		Outputs: Popup window which shows widget’s results

Widget: Load corpus

[image: _images/nlp.png]

		Parameter: Web service address

		Parameter: File

		Output: Corpus (corpus)

		Example usage: ToTrTaLe [http://clowdflows.org/workflow/228/]

Widget: Load corpus2

[image: _images/nlp.png]

		Parameter: File

		Parameter: Use text

		Parameter: (Input text)

		Output: Corpus (corpus)

		Example usage: totrtale2 test [http://clowdflows.org/workflow/4933/]

Widget: Load tagged corpus

[image: _images/nlp.png]

		Parameter: File

		Parameter: Input format
		Possible values:
		Tab separated format

		TEI format

		Parameter: TEI format settings

		Parameter: Lemma name

		Parameter: POS name (Part of speech tag)

		Parameter: Sentence tag

		Parameter: Word tag

		Parameter: Tab separated format settings

		Parameter: Word index

		Parameter: Token index

		Parameter: Lemma index

		Parameter: POS index (Part of speech index.)

		Parameter: Start tag

		Parameter: End tag

		Parameter: Separator (Define regex expression)

		Output: Annotations

Widget: Term candidates viewer

[image: _images/nlp.png]

		Input: candidates

		Outputs: Popup window which shows widget’s results

		Example usage: Definition extraction (by S. Pollak et al.) [http://clowdflows.org/workflow/76/]

Widget: Term extraction

[image: _images/nlp.png]
Term extraction from totrtale annotations.

		Input: Annotations (ToTrTaLe annotations)

		Parameter: Web service address

		Parameter: Language
		Possible values:
		English

		Slovene

		Output: Candidates (Term candidates)

		Example usage: Definition extraction (Senja Pollak et al) - improved [http://clowdflows.org/workflow/1380/]

Widget: Term extraction2

[image: _images/nlp.png]
Term extraction from totrtale annotations.

		Input: Annotations (ToTrTaLe annotations)

		Parameter: Language
		Possible values:
		English

		Slovene

		Parameter: Slovene reference corpus
		Possible values:
		Fida+

		GigaFida

		KRES

		Parameter: English reference corpus
		Possible values:
		BNC

		Parameter: Use default stop word list (Slovene:
itd.
English:
et al.)

		Parameter: Upload stop word list (Remove stop words)

		Output: Candidates (Term candidates)

Widget: ToTrTaLe

[image: _images/nlp.png]
A tool developed to process historical (Slovene) text, which annotates words in a TEI encoded corpus with their modern-day equivalents, morphosyntactic tags and lemmas. Such a tool is useful for developing historical corpora of highly-inflecting languages, enabling full text search in digital libraries of historical texts, for modernising such texts for today’s readers and making it simpler to correct OCR transcriptions.

		Input: Corpus

		Parameter: WSDL (Web service address)

		Parameter: Language (Language of the input corpus)
		Possible values:
		English

		Slovene

		Parameter: XML output (Output results as XML)

		Parameter: Post-processing (Apply post processing)

		Parameter: Bohoricica

		Parameter: Antique slovenian

		Output: Annotations

		Example usage: Definition extraction (Senja Pollak et al) - improved [http://clowdflows.org/workflow/1380/]

Widget: ToTrTaLe2

[image: _images/nlp.png]
A tool developed to process historical (Slovene) text, which annotates words in a TEI encoded corpus with their modern-day equivalents, morphosyntactic tags and lemmas. Such a tool is useful for developing historical corpora of highly-inflecting languages, enabling full text search in digital libraries of historical texts, for modernising such texts for today’s readers and making it simpler to correct OCR transcriptions.

		Input: Corpus

		Parameter: Language (Language of the input corpus)
		Possible values:
		English

		Slovene

		Parameter: XML output (Output results as XML)

		Parameter: Post-processing (Apply post processing)

		Output: Annotations

		Example usage: totrtale2 test [http://clowdflows.org/workflow/4933/]

Category Noise Handling

Category Noise Filters

Widget: Classification Filter

[image: _images/CF-filter-black.png]
A widget which uses a classifier as a tool for detecting noisy instances in data.

		Input: Learner

		Input: Dataset

		Parameter: Timeout

		Parameter: Number of Folds for Cross-Validation
		Possible values:
		10

		2

		3

		4

		5

		6

		7

		8

		9

		Output: Noise instances

		Example usage: VIPER workflow - CHD 5% noise [http://clowdflows.org/workflow/43/]

Widget: Matrix Factorization Filter

[image: _images/CF-filter-black.png]

		Input: Dataset

		Parameter: Threshold

		Output: Noise instances

Widget: Saturation Filter

[image: _images/SF-filter_1.png]
Widget implementing a saturation filter used to eliminate noisy training examples from labeled data.
Reference: http://www.researchgate.net/publication/228898399

		Input: Dataset

		Parameter: Type of Saturation Filtering
		Possible values:
		Normal

		Pre-pruned

		Output: Noise instances

		Example usage: NoiseRank - CHD [http://clowdflows.org/workflow/115/]

Widget: HARF

[image: _images/HARF_60-48-RF.png]
High Agreement Random Forest

		Parameter: Agreement Level
		Possible values:
		60

		70

		80

		90

		Output: HARF Classifier

		Example usage: VIPER workflow - CHD 5% noise [http://clowdflows.org/workflow/43/]

Widget: NoiseRank

[image: _images/NoiseRank3.png]
Widget implementing an ensemble-based noise ranking methodology for explicit noise and outlier identification.
Reference: http://dx.doi.org/10.1007/s10618-012-0299-1

		Input: Dataset

		Input: Noisy Instances

		Output: All Noise

		Output: Selected Instances

		Output: Selected Indices

		Example usage: NoiseRank - CHD [http://clowdflows.org/workflow/115/]

Category Objects

Widget: Concatenate lists

[image: _images/question-mark.png]
Appends the contents of the second list to the end of the first list.

		Input: Lists

		Output: List

		Example usage: Orange and Weka algorithms Precision-Recall Space visualization [http://clowdflows.org/workflow/642/]

Widget: Create Dictionary

[image: _images/Task-List-icon.png]
Creates a dictionary structure, by using ‘key’ and ‘value’ pairs.

		Input: Key

		Input: Value

		Output: Dictionary

Widget: Create List

[image: _images/Task-List-icon.png]
Creates a list structure, by using provided list elements.

		Input: Element

		Output: List

		Example usage: For loop example [http://clowdflows.org/workflow/10/]

Widget: Create Tuple

[image: _images/Task-List-icon.png]
Creates a tuple structure of arbitrary length, by using provided elements.

		Input: Element

		Output: Tuple

Widget: Evaluate string

[image: _images/question-mark.png]
Safe evaluation of strings.

		Input: Input string (String to evaluate)

		Output: Object (Result of evaluation)

Widget: Extract results

[image: _images/question-mark.png]
This widget is useful for preparing results for visualization using the Viper widget.

		Input: Runtime

		Input: Name

		Input: F score

		Input: Precision

		Input: Recall

		Input: Area under curve

		Input: Accuracy

		Output: Results (results)

Widget: Javascript Snippet

[image: _images/question-mark.png]

		Input: Input

		Parameter: Snippet

		Output: Output

Widget: List average

[image: _images/question-mark.png]
Computes the average of the given input list.

		Input: List (Input list)

		Output: Average (Average value)

Widget: Merge dictionaries

[image: _images/question-mark.png]
Merges two dictionary structures.

		Input: Dictionary 1

		Input: Dictionary 2

		Output: Dictionary

Widget: Ravel list

[image: _images/question-mark.png]
Ravels and removes empty sublists from the input list. Useful in for loops.

		Input: List (Input list)

		Output: List (Output list)

Widget: Unzip list

[image: _images/question-mark.png]
Unzips a list of tuples for the given index.

Example inputs:

index = 0
input_list = [(a, 1), (b, 2), (c, 3)]

result: [a, b, c]

or

index = 1
input_list = [(a, 1), (b, 2), (c, 3)]

result: [1, 2, 3]

		Input: List (Input list)

		Parameter: Index (Tuple index to unzip)

		Output: List (Output list)

Widget: Create Range

[image: _images/Create-Range_1.png]
Creates a list of values ranging from 0 to n-1, where n is the range length.

		Parameter: Range Length (Number of Items in Range)

		Output: Range

		Example usage: NAKE-10x-5% [http://clowdflows.org/workflow/63/]

Widget: Delay

[image: _images/482063585452602669.png]
Delays for a certain amount of seconds

		Input: Data

		Parameter: Time (Time in seconds)

		Output: Data

		Example usage: Delay example [http://clowdflows.org/workflow/7/]

Widget: Ensemble

[image: _images/ensemble-small.png]

		Input: Data Indices

		Parameter: Ensemble Type
		Possible values:
		Consensus

		Majority

		Parameter: Ensemble Name

		Output: Ensembled Indices

Widget: Object viewer

[image: _images/glass_3.png]
Displays any input.

		Input: Object (Any type of object.)

		Outputs: Popup window which shows widget’s results

		Example usage: Simple arithmetics [http://clowdflows.org/workflow/9/]

Widget: Pickle object

[image: _images/pickle.png]
Transform a ClowdFlows (or a Python) object into a format that can be stored.

		Input: object

		Output: pickled object

		Example usage: Decision support [http://clowdflows.org/workflow/383/]

Widget: Unpickle object

[image: _images/pickle_1.png]
Creates a ClowdFlows (or a Python) object from its pickled format.

		Input: pickled object

		Output: object

Widget: Stopwatch

[image: _images/482063585452602669.png]
Logs the moment of the signal passing this widget (widget beeing run). If there is datetime in the input, it also outputs timespan difference between current time and input datetime.

		Input: Signal (Signal that triggers stopwatch.)

		Input: Datetime (Datetime, based on which the timespan is calcualted.)

		Output: Signal (Unchanged signal from the input.)

		Output: Datetime (Datetime when the signal passed this widget (when this widget was run).)

		Output: Elapsed Time (Timespan between input time and time of triggering.)

Category Orange

Category Classification and Regression

Widget: C4.5 Tree Learner

[image: _images/orange-C45.png]
C4.5 learner by Ross Quinlan, this widget provides a graphical interface to the well-known Quinlan’s C4.5 algorithm for construction of classification tree.

		Output: C4.5 Tree Learner (The C4.5 learning algorithm.)

Widget: CN2 Rule Learner

[image: _images/orange-CN2-small.png]
Use this widget to learn a set of if-then rules from data. The algorithm is based on CN2 algorithm.

		Output: CN2 Rule Learner (The CN2 Rule learning algorithm.)

Widget: Classification Tree

[image: _images/orange-ClassificationTree.png]
Classification Tree Learner.

		Output: Classification Tree Learner (The classification tree learning algorithm.)

		Example usage: Feature reduction [http://clowdflows.org/workflow/547/]

Widget: Logistic Regression

[image: _images/orange-LogisticRegression.png]
Logistic regression is a statistical classification method that fits data to a logistic function. A logistic regression classification model stores estimated values of regression coefficients and their significances, and uses them to predict classes and class probabilities.

		Output: Logistic Regresion Learner (The logistic regression learning algorithm.)

Widget: Lookup Learner

[image: _images/lookup.png]
Lookup classifiers predict classes by looking into stored lists of cases. A learner sorts the data instances and merges those with the same feature values.

		Output: Lookup Learner (Lookup learning algorithm.)

Widget: Majority Learner

[image: _images/orange-Majority.png]
A Learner that returns the majority class, disregarding the example’s attributes. Accuracy of classifiers is often compared with the “default accuracy”, that is, the accuracy of a classifier which classifies all instances to the majority class. The training of such classifier consists of computing the class distribution and its modus. This “learning algorithm” will most often be used as a baseline, that is, to determine if some other learning algorithm provides any information about the class.

		Output: Majority Learner (The “learning” algorithm.)

Widget: Naive Bayes

[image: _images/orange-NaiveBayes.png]
A Naive Bayes classifier is a probabilistic classifier that estimates conditional probabilities of the dependant variable from training data and uses them for classification of new data instances. The algorithm is very fast for discrete features, but runs slower for continuous features.

		Output: Bayes Learner (The naive Bayesian learning algorithm.)

		Example usage: VIPER workflow - CHD 5% noise [http://clowdflows.org/workflow/43/]

Widget: Random Forest

[image: _images/orange-RandomForest.png]
Random forest is a classification technique that, given the set of class-labeled data, builds a set of classification trees. Each tree is developed from a bootstrap sample from the training data. When developing individual trees, an arbitrary subset of attributes is drawn (hence the term “random”) from which the best attribute for the split is selected. The classification is based on the majority vote from individually developed tree classifiers in the forest.

		Parameter: Number of decision trees (tells the algorithm how many classification trees will be included in the forest.)

		Output: Random Forest Learner (The random forest learning algorithm.)

		Example usage: NoiseRank - CHD [http://clowdflows.org/workflow/115/]

Widget: Rule Induction

[image: _images/orange-Rule-Learner.png]
A base rule induction learner. The algorithm follows separate-and-conquer strategy, which has its origins in the AQ family of algorithms (Fuernkranz J.; Separate-and-Conquer Rule Learning, Artificial Intelligence Review 13, 3-54, 1999). Such algorithms search for the optimal rule for the current training set, remove the covered training instances (separate) and repeat the process (conquer) on the remaining data.

		Output: Rule Learner (Rule Learner algorithm.)

Widget: Support Vector Machine

[image: _images/orange-SVM_1.png]
Support vector machine learner.

		Output: Support Vector Machine Learner (The support vector machine learning algorithm.)

		Example usage: VIPER workflow - CHD 5% noise [http://clowdflows.org/workflow/43/]

Widget: Support Vector Machine Easy

[image: _images/orange-SVMEasy-new.png]
Learning algorithm which helps with the data normalization and parameter tuning.

		Output: Support Vector Machine Easy Learner (SVM Easy learning algorithm.)

Widget: k-Nearest Neighbours

[image: _images/orange-kNN.png]
The nearest neighbors algorithm is one of the most basic, lazy machine learning algorithms. The learner only stores the training data, and the classifier makes predictions based on the instances most similar to the data instance being classified.

		Output: kNN Learner (The kNN learning algorithm.)

Category SegMine

Widget: Biomine connection search

[image: _images/BiomineConnections.png]

		Input: End nodes

		Input: Start nodes

		Parameter: Group nodes

		Parameter: Database version

		Parameter: Single component

		Parameter: Max nodes

		Parameter: Medoids

		Output: Result (Result graph)

		Output: Best path

Widget: Biomine medoid search

[image: _images/BiomineMedoids.png]

		Input: Start nodes

		Parameter: Group nodes

		Parameter: Database version

		Parameter: Single component

		Parameter: Max nodes

		Output: Result (Result graph)

		Output: Best path

Widget: Biomine neighbourhood search

[image: _images/BiomineNeighbourhood.png]

		Input: Start nodes

		Parameter: Group nodes

		Parameter: Database version

		Parameter: Single component

		Parameter: Max nodes

		Parameter: Medoids

		Output: Result (Result graph)

		Output: Best path

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Biomine search (plants)

[image: _images/question-mark.png]
Calls the Biomine search engine (for plant data, updated version at JSI).

		Input: Query nodes (A list of query nodes)

		Input: Database (Name of the database to use)

		Parameter: Max nodes (Search parameter maxnodes)

		Output: Biomine graph (A graph in .bmg format)

Widget: Biomine visualizer

[image: _images/BiomineVisualizer1.png]

		Input: Graph

		Output: Graph

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Biomine visualizer (js)

[image: _images/question-mark.png]
Graph visualization for Biomine in Javascript.

		Input: Graph (Graph as a string in Biomine .bmg format)

		Outputs: Popup window which shows widget’s results

Widget: Cutoff (logFC)

[image: _images/question-mark.png]

		Input: Gene ranks (sorted list of pairs (geneID, rank))

		Input: Fold change values (sorted list of pairs (geneID, logFC))

		Parameter: Upper bound (upper bound for cutoff)

		Parameter: Lower bound (lower bound for cutoff)

		Parameter: Absolute (absolute or not)

		Output: Filtered gene ranks (Filtered ordered list of pairs (geneID, rank))

		Output: Filtered fold change values (Filtered ordered list of pairs (geneID, logFC))

		Example usage: SegMine basic workflow [http://clowdflows.org/workflow/2686/]

Widget: Filter unknown ATH genes

[image: _images/question-mark.png]

		Input: Gene ranks (list of pairs (gene, rank))

		Output: Filtered gene ranks (filtered list of pairs (gene, rank))

Widget: Filter unknown STU genes

[image: _images/question-mark.png]

		Input: Gene ranks (list of pairs (gene, rank))

		Output: Filtered gene ranks (filtered list of pairs (gene, rank))

Widget: Fold change gene filter

[image: _images/fc.png]
Filters the genes according to FC threshold.

		Input: Orange dataset

		Output: Orange dataset (Orange dataset with filtered genes)

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Gene Ranker

[image: _images/GeneRanker.png]

		Input: Microarray Table (Orange data table)

		Parameter: Number of neighbours

		Parameter: Reference examples (0 = all)

		Output: Gene ranks

		Output: tScores

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Hierarchical clustering

[image: _images/question-mark.png]
Performs hierarchical clustering using the selected linkage.

		Input: Data table (Orange data table with examples)

		Parameter: Distance metric
		Possible values:
		Euclidean

		Hamming

		Mahalanobis

		Manhattan

		Maximal

		Pearson

		Relief

		Spearman

		Parameter: Linkage (Type of linkage)
		Possible values:
		average

		complete

		single

		ward

		Output: Hierarchical clustering (Orange hierarchical clustering data structure)

Widget: Map miRNA to gene (tarbase)

[image: _images/question-mark.png]

		Input: miRNA ranks (list of pairs (rna, rank))

		Output: gene ranks (list of pairs (gene, rank))

Widget: Map miRNA to gene (targetscan)

[image: _images/question-mark.png]
Maps a the input list of ranked miRNA into a ranked list of genes using the Targetscan database.

		Input: miRNA ranks (list of pairs (rna, rank))

		Output: gene ranks (list of pairs (gene, rank))

Widget: Rank plotter

[image: _images/RankPlotter.png]

		Input: Gene ranks (List of pairs (geneID, rank))

		Outputs: Popup window which shows widget’s results

		Example usage: SegMine basic workflow [http://clowdflows.org/workflow/2686/]

Widget: Read microarray data from file

[image: _images/question-mark.png]
Reads a csv of gene expression data in SegMine specific format into an Orange data table.

		Parameter: Microarray csv data file

		Parameter: Fold change: Input data format (Specifies whether the input data is linear or log2 transformed (needed for fold change computation).)
		Possible values:
		linear

		log2-transformed

		Parameter: Fold change: Calculation method (Specifies fold change calculation method.)
		Possible values:
		difference of average log2 values

		ratio

		Output: Orange data table with class (Orange data table where columns are genes and rows are measurements. The class attribute indicates whether the measurement belongs to the control or the treatment group.)

		Output: Fold change (sorted list of pairs (gene, fold change))

		Example usage: Seg3graph [http://clowdflows.org/workflow/1129/]

Widget: Resolve gene synonyms

[image: _images/genesynonyms.png]

		Input: gene ranks (list of pairs (gene, rank))

		Output: gene ranks (list of pairs (entrez_id, rank))

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Resolve STU gene names

[image: _images/question-mark.png]
Maps known probe STU gene names into GoMapMan/rep names

		Input: Gene ranks (list of pairs (gene, rank))

		Output: Mapped gene ranks (mapped list of pairs (gene, rank))

Widget: SEGS

[image: _images/SEGS_HMR.png]

		Input: Input data (List of pairs (geneID, rank))

		Parameter: Service wsdl location (Sevice wsdl location)

		Parameter: GSEA test weight

		Parameter: PAGE test weight

		Parameter: Fisher test weight

		Parameter: Use molecular functions ontology

		Parameter: Summarize descriptions

		Parameter: Use biological processes ontology

		Parameter: Random seed (Random seed (-1 uses current time))

		Parameter: Use cellular components ontology

		Parameter: Max reported rules

		Parameter: Use KEGG ontology

		Parameter: maximalPvalue (Maximal p-value)

		Parameter: Minimal set size

		Parameter: Maximum number of terms

		Parameter: Number of interacting terms (Number of interacting terms (gene interactions))

		Parameter: Cutoff (Cutoff threshold for DE/ non-DE genes)

		Output: Best rules according to fisher (Set of rules)

		Output: Best rules according to PAGE (Set of rules)

		Output: Best rules according to GSEA (Set of rules)

		Output: Best rules with combined metrics (Set of rules)

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: SEGS ATH

[image: _images/SEGS_HMR.png]

		Input: Input data (List of pairs (geneID, rank))

		Parameter: Service wsdl location (Sevice wsdl location)

		Parameter: GSEA test weight

		Parameter: PAGE test weight

		Parameter: Fisher test weight

		Parameter: Use molecular functions ontology

		Parameter: Summarize descriptions

		Parameter: Use biological processes ontology

		Parameter: Random seed (Random seed (-1 uses current time))

		Parameter: Use cellular components ontology

		Parameter: Max reported rules

		Parameter: Use KEGG ontology

		Parameter: maximalPvalue (Maximal p-value)

		Parameter: Minimal set size

		Parameter: Maximum number of terms

		Parameter: Number of interacting terms (Number of interacting terms (gene interactions))

		Parameter: Cutoff (Cutoff threshold for DE/ non-DE genes)

		Output: Best rules according to fisher (Set of rules)

		Output: Best rules according to PAGE (Set of rules)

		Output: Best rules according to GSEA (Set of rules)

		Output: Best rules with combined metrics (Set of rules)

Widget: SEGS Rule browser

[image: _images/RuleBrowser.png]

		Input: SEGS set of rules

		Output: List of nodes

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: SEGS rules as Orange table

[image: _images/question-mark.png]
Transform SEGS rules into an Orange ExampleTable. Useful for e.g., clustering.

		Input: SEGS rules (Rules as returned by the SEGS widget)

		Output: Gene table (Rules as rows, their genes as columns.)

		Output: Term table (Rules as rows, their terms as columns.)

Widget: SEGS STU

[image: _images/SEGS_HMR.png]

		Input: Input data (List of pairs (geneID, rank))

		Parameter: Service wsdl location (Sevice wsdl location)

		Parameter: GSEA test weight

		Parameter: PAGE test weight

		Parameter: Fisher test weight

		Parameter: Use molecular functions ontology

		Parameter: Summarize descriptions

		Parameter: Use biological processes ontology

		Parameter: Random seed (Random seed (-1 uses current time))

		Parameter: Use cellular components ontology

		Parameter: Max reported rules

		Parameter: Use KEGG ontology

		Parameter: maximalPvalue (Maximal p-value)

		Parameter: Minimal set size

		Parameter: Maximum number of terms

		Parameter: Number of interacting terms (Number of interacting terms (gene interactions))

		Parameter: Cutoff (Cutoff threshold for DE/ non-DE genes)

		Output: Best rules according to fisher (Set of rules)

		Output: Best rules according to PAGE (Set of rules)

		Output: Best rules according to GSEA (Set of rules)

		Output: Best rules with combined metrics (Set of rules)

Widget: Select Biomine database

[image: _images/question-mark.png]
Calls the API of the new Biomine service to get the list of available databases.

		Output: Database name (Name of the selected database)

Widget: Select hierarchical cluster

[image: _images/question-mark.png]
A non-interactive variant of Hierarchical clustering for SegMine.

		Input: Hierarchical clustering (Orange hierarchical clustering object)

		Output: Selected examples (Examples from the selected cluster)

Widget: T-test gene filter

[image: _images/ttest.png]
Filters the genes according to t-test p-value threshold.

		Input: Orange dataset

		Output: Orange dataset (Orange dataset with filtered genes)

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Union and intersection of attributes for SegMine rule table

[image: _images/question-mark.png]
Returns a set of strings computed as a union and intersection of all attributes of a SegMine rule table (genes or terms).

		Input: Data table (Orange data table)

		Output: Attribute union (Union of attributes of rules)

		Output: Attribute intersection (Intersection of atributes of rules)

Category Subgroup discovery

Widget: Build subgroups

[image: _images/builder.png]

		Input: Data table

		Output: SD learner (learner)

		Output: SD rules (rule set)

		Output: SD classifier (classifier)

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: RelSets

[image: _images/question-mark.png]
The RelSets algorithm proposed by Garriga et al. (2008):
http://jmlr.org/papers/v9/garriga08a.html

Implemented as a web-service by Podpecan and Kralj:
http://kt.ijs.si/petra_kralj/RelSets/

		Input: Input Table (Input Table as an Orange Table represented as a string)

		Parameter: Timeout (Web-service timeout)

		Parameter: Minimal TP Rate (Minimal True Positive Rate)

		Output: Rules As String (The Rules as in a human readable format)

		Output: Rules As PMML (The Rules in PMML format)

Widget: Query data with subgroups

[image: _images/querydatawithsg.png]

		Input: Data table (data table)

		Input: SD Rules (rules)

		Output: Data table (queried data)

		Output: Data table (remaining data)

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Select subgroups

[image: _images/selectsg.png]

		Input: SD rules (rules)

		Output: SD rules (selected rules)

		Example usage: Explaining subgroups - Microarray use case [http://clowdflows.org/workflow/911/]

Widget: Subgroup measures

[image: _images/question-mark.png]

		Input: SD rules (rules)

		Outputs: Popup window which shows widget’s results

Widget: Subgroup ROC visualization

[image: _images/roc.png]

		Input: SD rules (rules)

		Outputs: Popup window which shows widget’s results

Widget: Subgroup bar visualization

[image: _images/bar.png]

		Input: SD rules (rules)

		Outputs: Popup window which shows widget’s results

Category Unsupervised

Widget: Attribute distance

[image: _images/AttributeDistance.png]
Computes the distances between the attributes in the data sets. Don’t confuse it with a similar widget for computing the distances between examples.

		Input: Orange Data Table (A list of examples)

		Parameter: Measures for attributes (The two kinds of attributes (discrete and continuous) have different measures of distance.)
		Possible values:
		2-way interactions - I(A;B)/H(A,B)

		3-way interactions - I(A;B;C)

		Pearson’s chi-square

		Pearson’s correlation

		Spearman’s correlation

		Output: Distance matrix (A matrix of attribute distances.)

Widget: Example Distance

[image: _images/ExampleDistance.png]
Computes the distances between the examples in the data set.

		Input: Orange Data Table (A list of examples)

		Parameter: Distance Metrics (The available Distance Metrics definitions are Euclidean, Manhattan, Hammming and Relief. Besides, of course, different formal definitions, the measures also differ in how correctly they treat unknown values. Manhattan and Hamming distance do not excel in this respect; Relief distance is similar to Manhattan, but with a more correct treatment for discrete attributes.)
		Possible values:
		Euclidean

		Hamming

		Manhattan

		Pearson Correlation

		Relief

		Spearman Rank Correlation

		Parameter: Normalization

		Output: Distance matrix (A matrix of example distances)

Widget: Hierarchical clustering

[image: _images/HierarchicalClustering_60.png]
The widget computes hierarchical clustering of arbitrary types of objects from the matrix of distances between them and shows the corresponding diagram. If the distances apply to examples, the widget offers some special functionality (adding cluster indices, outputting examples...).

		Input: Distance Matrix (A matrix of distances between items being clustered)

		Parameter: Linkage (The widget supports three kinds of linkages. In Single linkage clustering, the distance between two clusters is defined as the distance between the closest elements of the two clusters. Average linkage clustering computes the average distance between elements of the two clusters, and Complete linkage defines the distance between two clusters as the distance between their most distant elements.)
		Possible values:
		Average linkage

		Complete linkage

		Single linkage

		Ward’s linkage

		Parameter: Visualization type
		Possible values:
		Circle

		Tree

		Output: Centroids (A list of cluster centroids)

		Output: Selected examples (A list of selected examples; applicable only when the input matrix refers to distances between examples)

		Output: Unselected examples (A list of unselected examples)

Category Evaluation

Category Classification Statistics

Widget: Area under curve (ROC analysis)

[image: _images/ROCAnalysis_60.png]

		Input: Evaluation Results (Results of classifiers’ tests on data.)

		Parameter: Method
		Possible values:
		By Pairs

		By Weighted Pairs

		One Against All

		Weighted One Against All

		Output: Area Under Curve

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/BiomineVisualizer1.png

cf_dev_wiki/example.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

Creating a widget - step by step

About the example: REST Web service wrapper

Here, we will wrap an existing piece of code into a ClowdFlows widget
step by step. The exemplary piece of code is a call to a REST Web
service, but it could be any other similar call. Namely, ClowdFlows
enables easy inclusion of WSDL Web services right in the user’s
interface, but this does not work for the REST ones (yet).

We prepared a simple REST Web service for this example, which calculates
a sentiment score of a sentence. It is called like this:

http://kt.ijs.si/MartinZnidarsic/webservices/sentana/sentana.php?sentence=What+a+lovely+day

and returns a JSON response of such a kind:

{"status":200,"status_message":"OK","data":{"num_positive_words":1,"num_negative_words":0,"sentimentscore":0.25,"lex_pos_length":2006,"lex_neg_length":4783}}

What we are interested in, is the sentimentscore value.

Since ClowdFlows is written in Python, we must wrap a call to this Web
service in a piece of Python code. A standalone piece of code for this
purpose could look like this:

import urllib2
import json
somesentence = "The good the bad and the ugly"
somesentence = somesentence.replace (" ", "+")
url = 'http://kt.ijs.si/MartinZnidarsic/webservices/sentana/sentana.php?sentence=' + somesentence
response = urllib2.urlopen(url).read()
jsondata = json.loads(response)
print "Sentiment score is: " + str(jsondata['data']['sentimentscore'])

Creating the widget

Step 1 : Enter the attributes

In order to create a widget, we should follow the instructions on
creating an abstract widget:
http://source.ijs.si/concrete/mothra/wikis/widget In our case, we did
the following on the web page where the widget information is to be
entered (http://127.0.0.1:8000/admin/workflows/abstractwidget/add/):
* in the Name category we entered Sentana * as Action, we set
call_sentana * we have left the Wsdl and the Wsdl method empty *
in Description we gave a short description of the widget and what kind
of inputs it expects * for Category, we selected Creativity as we
want it to be shown under Creativity in the widget menu * we left then
all the rest of the form empty down to the Package, where we set it to
the existing package creativity * as a last step here, we defined
the inputs and outputs ** there was one input defined with ***
text as its Name *** txt as its Short name *** and
inp1 as the Variable for that input ** and one output defined with
*** sentiment score as its Name *** ses as its Short name
*** and out1 as the Variable for that output

We must press the Save button in order to save the information about the
widget. We can then leave the web page.

Step 2 : Implement the action

Following the instructions, we create a function named call_sentana
(because this name was entered as Action in Step 1). This function has
to be added in the library.py file of the widget’s package. Since in our
case, the widget’s package is creativity, we have added it to
.../mothra/workflows/creativity/library.py

The action must receive the input_dict and return an output_dict,
which are both Python dictionaries. The simplest action function (just
copying the input to the output), as shown in the instructions, would
be:

def my_package_action(input_dict):
 output_dict = {}
 output_dict['out1'] = input_dict['inp1']
 return output_dict

but we would like it to make the Sentana Web service call (similar as in
the example description), so we define it as:

def call_sentana(input_dict):
 import urllib2
 import json
 somesentence = input_dict['inp1'] # our only input is in input_dict['inp1'] , notice the Variable name 'inp1'
 somesentence = somesentence.replace (" ", "+")
 url = 'http://kt.ijs.si/MartinZnidarsic/webservices/sentana/sentana.php?sentence=' + somesentence
 response = urllib2.urlopen(url).read()
 jsondata = json.loads(response)
 result = jsondata['data']['sentimentscore']
 output_dict = {}
 output_dict['out1'] = result # result is put in the only output denoted with output_dict['out1']
 return output_dict

In such a function we could instead of a Web service call put a call to
something else just as easily.

Step 3 : Exporting your widget to the package data file

When you have added or modified an abstract widget on that admin web
page, you made changes only to the local database. You must now also
export it to a package data file. In the instructions, the general
command given for this is

python manage.py export_package $your_package_name$

in our case this is

python manage.py export_package $your_package_name$

Step 4 : Check it out and make it available

The widget should now appear in the widget menu of your locally served
ClowdFlows platform. Check it out, make a few test runs, use it and have
fun.

When you are ready to make your widget available to others, push it to
the ConCreTe ClowdFlows git repository: * first make a fresh pull:
git pull git@source.ijs.si:concrete/mothra.git * if you receive
anything new, always run: python manage.py auto_import_packages
(beware: this will run over your locally changed widgets, if you did not
export them yet as instructed in Step 3) * add the changed files (the
library.py and any others) to be committed, e.g.:
git add workflows/creativity/library.py * commit, e.g.:
git commit workflows/creativity/library.py * push it from the local
repository to the ConCreTe one: git push

That’s it.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/RankPlotter.png

cf_dev_wiki/creating-a-package.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

ClowdFlows packages

ClowdFlows packages are used to transfer widget descriptions from
one installation of ClowdFlows to another. It is not necessary for a
widget to belong to a specific package. It is recommended that you
create widgets within packages if you wish to transfer these widgets to
the public installation of ClowdFlows or if you want someone else to use
your work without the headache of registering each widget in the
administration panel in a particular ClowdFlows installation.

Creating a package from the package template

To start a new package from a template use the built-in management
command like this:

python manage.py new_package_from_template $new_package_name$

Replace with a package name. IMPORTANT:
Please avoid naming packages after built-in Python or Django components.
In particular, this means you should avoid using names like django
(which will conflict with Django itself), orange, or test (which
conflicts with a built-in Python package).

This command creates a new package based on package_template. The
package template is empty so you will need to add some new widgets and
export them so that you may import them elsewhere.

New package overview

When you create a package called new_package a new folder will appear
in the clowdflows/workflows folder with the same name as your package.

The following files and folders will be created:

new_package/templates
new_package/templates/interactions
new_package/templates/visualizations
new_package/library.py
new_package/urls.py
new_package/__init__.pyc
new_package/visualization_views.py
new_package/interaction_views.py
new_package/views.py
new_package/__init__.py
new_package/settings.py
new_package/library.pyc
new_package/static
new_package/static/new_package
new_package/static/new_package/icons
new_package/static/new_package/icons/widget
new_package/static/new_package/icons/treeview

Important things you should know:

		static new_package subfolder - there is a subfolder in the
static folder with the same name as the package. This is used for
widget icons. If you add any other folders here it may clash with
other static files, so you are advised to only put icons, css and
other files inside the new_package/static/new_package folder.

		mothra/local_settings.py and
mothra/__local_settings.py contain a tuple
INSTALLED_APPS_WORKFLOWS_SUB into which you should add an item
'workflows.new_package' so that the code looks somewhat like
this:

INSTALLED_APPS_WORKFLOWS_SUB = (
 'workflows.base',
 'workflows.new_package',
 ...

Exporting your custom widgets to the package data file

When you have added or modified an abstract widget you can export it so
that they may be included to the codebase.

python manage.py export_package $your_package_name$

Package manager

The package manager functions in such a way that each widget and each
category is saved into a separate json file, which makes it easier to
work with git and to manually change some attributes without having to
load up the server and doing it in the django admin.

There are four commands that are related to the package manager:

		export_package

python manage.py export_package base

This command exports all the widgets in the package base. It will also
export all categories, which contain at least one widget from the
package. The command will output which widgets were new, which were
changed and will alert you if there are no changes.

		import_package

python manage.py import_package base

This command will import all the exported widgets and categories from
the base package. Same as export, the command will output which widgets
and categories have actually changed (and which are new, if there are
any).

		export_all

python manage.py export_all

This command goes through all the INSTALLED_APPS that start with
workflows. and exports them the same as export_package.

		import_all

python manage.py import_all

This command goes through all the INSTALLED_APPS that start with
workflows. and imports them.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/roc.png

_images/wsm.png

_images/SF-filter_1.png

cf_dev_wiki/widget.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

Widget and Abstract Widget

There is a distinction between a Widget and an Abstract Widget In the
workflows app of the Mothra project.

Widgets are actual instances of widgets that belong to a specific
workflow and were created by a user of ClowdFlows. An abstract
widget is an object that is created by a ClowdFlows developer (or a
user in case of importing a Web Service). Abstract widgets do not
belong to specific workflows, but in categories.

When a user puts a widget on the canvas happens is this: a new widget is
created where all the information about the widget is copied from an
abstract widget. Inputs are created by copying abstract inputs (the same
with outputs). Almost every widget has a corresponding Abstract Widget
that it is derived from (the exceptions are the process control widgets
- the subprocess, input, output, for input, and for output).

When developing your own widgets, you will create Abstract Widgets.

Creating an Abstract Widget

To create an abstract widget navigate to:

http://127.0.0.1:8000/admin/workflows/abstractwidget/add/

Here you enter the attributes of the widget.

		Name is the name that will be displayed in the widget repository
and under the actual widget itself.

		Action is the name of a python function that will be called when
the widget is executed.

		WSDL and WSDL method are used if the widget is a call of a Web
Service. Web Service widgets are usually not entered in the admin
panel, but in the application itself by importing a Web Service.

		Description is used for a human readable description of what a
widget does. A user will see this when he right clicks the widget and
clicks help.

		Category determines to which category this widget belongs.
Categories can be nested.

		Visualization view is (like the action) a python function that is
a view that will render a template.

		If the User field is blank, everyone will see the widget,
otherwise just this user. This is mainly used for Web Service imports
as they are only visible to users that imported them.

		The widget can be interactive. This means that when a user
executes the widget, the action will perform, then the interaction
view will be executed and finally the Post interact action will
be executed.

		Image and Treeview image are deprecated and will be phased
out soon. Please use the static image field. This simplifies
sending images to other installations of ClowdFlows. In the static
image field just enter the filename of the image (without the path).
The path will be /icons/widget/
and /icons/treeview/ where the
treeview image is the small image that appears in the treeview on the
left side and the widget image is the actual normal sized icon for
the widget. IMPORTANT: the static image field only works if the
package is set.

		The flag has progress bar determines if the widget implements a
progress bar. Implementations of progress bars are displayed later on
this wiki page.

		The is streaming flag is currently under construction, please do
not use it yet.

		The Order determines the order in which the widget will be
displayed in the repository. This is set automatically when sorting
widgets in a single category from the admin.

		UID is set automatically when you export a package.

		Package is the package name. You are encouraged to use packages.

After you have filled in the attributes, enter the inputs and outputs.
Inputs have several more or less self explanatory attributes. You are
encouraged to set a parameter type for each input even if is not a
parameter, as users have the option to turn each input into a parameter
and vice-versa. If you choose the parameter type select box you have
to add Abstract Options to fill in the options. This can be done by
navigating to:

http://127.0.0.1:8000/admin/workflows/abstractinput/

Here you find your input and add the abstract options.

Another important attribute is the multi flag in the Abstract Input.
Inputs with this flag set will behave like this: whenever a connection
is added to this input another input will be created on the fly that
accepts the same data. In the action function, this will be represented
as a list.

The variable attribute of both the input and the output are
important because this is how the data will be accessed in the python
function that is executed when the widget runs.

Implementing the action of a widget

Let’s say you have chosen mypackage_action as the action (function
name), an input with the variable inp1 and an output with the
variable out1. Open the library.py file in your package folder
and add the following:

def my_package_action(input_dict):
 output_dict = {}
 output_dict['out1'] = input_dict['inp1']
 return output_dict

The action function takes a dictionary as an input and returns a
dictionary as an output. The keys of the dictionaries correspond to the
variables of inputs and outputs. IMPORTANT: if a widget has an
output with a variable that is not found in the dictionary when the
widget executes, an exception will be raised. So make sure you return a
dictionary with all the outputs.

This sample action function merely takes what is on the input and puts
it on the output.

Implementing the progress bar

If you wish to have a widget that takes a longer time to run and to
report its progress via a progress bar, you need to check the has
progress bar flag in the administration panel.

After that you need to do two thing:

		Modifiy your action function so that it takes a second argument (the
instance of the widget itself)

		Update the progress bar in your action function when appropriate

Here is an example of an action of a widget that implements a progress
bar:

def delay(input_dict,widget):
 widget.progress=0
 widget.save()
 timeleft = int(input_dict['time'])
 i = 0
 import time
 import math
 while i<timeleft:
 time.sleep(1)
 i=i+1
 widget.progress = math.floor(((i*1.0)/timeleft)*100)
 widget.save()
 widget.progress=100
 widget.save()
 output_dict = {}
 output_dict['data'] = input_dict['data']
 return output_dict

This is the delay widget that takes the number of seconds as an input
and sleeps for that amount of seconds. Each time after a sleep the
progress bar is updated. IMPORTANT the default runserver and
runserver_plus will not show progress bars as they cannot handle
threads. To see progress bars in your local installation of ClowdFlows,
please use Django Devserver.

https://github.com/dcramer/django-devserver

The widget must be saved each time the progress bar is updated. The
widget.progress atribute must be an integer between 1 and 100. Only use
100 when the widget has finished executing, because the user interface
will stop polling for the progress when it is at 100.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/sensitivity.png

_images/ws.png

_images/piechart.png

cf_dev_wiki/setting-up-your-development-version-of-clowdflows.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

Local installation of the ClowdFlows project

This project used to be called mothra (internally) that’s why there’s
still some references to it in these instructions.

Prerequisites

		python >= 2.5

		pip

		virtualenv/wrapper (optional)

		python headers if you’re compiling Pillow from source: you need the
python-dev package on debian systems

Installation

Creating the environment

Create a virtual python environment for the project. If you’re not using
virtualenv or virtualenvwrapper you may skip this step.

For virtualenvwrapper

mkvirtualenv --no-site-packages mothra-env

For virtualenv

virtualenv --no-site-packages mothra-env
cd mothra-env
source bin/activate

Clone the code

Obtain the url to your git repository.

git clone git@github.com:janezkranjc/clowdflows.git

Install requirements

cd clowdflows
pip install -r requirements.txt

Configure project

cp mothra/__local_settings.py mothra/local_settings.py
vi mothra/local_settings.py

Enable workflow packages

Uncomment the packages that you need in mothra/local_settings.py in
the INSTALLED_APPS_WORKFLOWS_SUB tuple.

Sync database

Say “no” to creating a super-user when prompted. You’ll create the user
after migrations.

python manage.py syncdb --noinput

Migrate database

python manage.py migrate

Create super-user

python manage.py createsuperuser

Import packages

python manage.py import_all

Running

python manage.py runserver

Running with debugger

python manage.py runserver_plus

Open browser to http://127.0.0.1:8000

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/BiomineVisualizer.png

_images/orange-C45.png

_images/BiomineConnections.png

_images/orange-ClassificationTree.png

cf_dev_wiki/removing-widgets.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

 It is now possible to remove widgets from exported packages. You can do
so by physically moving an exported json file to a directory named
deprecated_widgets which should be located in the package_data
directory.

E.g. we want to remove the Create String widget from the base package:

mkdir workflows/base/package_data/deprecated_widgets
mv workflows/base/package_data/widgets/1b38bbab-7f89-4469-94cd-2f481f9c61f7.json workflows/base/package_data/deprecated_widgets/.

python manage.py import_package base

The import package command will do the following for each deprecated
widget:

Check if there are any acutal widgets using this abstract widget * if
so: the command prints out a warning in red colors to notify the
developer that the widget was not removed because it is used in
workflows. * if not: the abstract widget gets deleted from the
database.

If you have deprecated widgets in your database and you export the
package the system will notify you that you are trying to export
deprecated widgets and they will not be exported. All other changes to
non-deprecated widgets will still be exported.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/RuleBrowser.png

cf_dev_wiki/external-packages.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

Creating an external package

It is possible to create external ClowdFlows packages which can be
installed with pip and included into ClowdFlows.

This allows us to have separate repositories for different packages. As
time will progress I will move most of the packages to external packages
so that we will keep only the bare minimum in the main ClowdFlows
repository.

Here is an example of an external package:

https://github.com/anzev/rdm

The Python package is called rdm and features two ClowdFlows packages:

rdm.db
rdm.wrappers

Each of these packages is pretty much the same as all the internal
ClowdFlows packages in the workflows folder.

In order to import these packages you must do the following:

		add ‘rdm.db’ and ‘rdm.wrappers’ to your
INSTALLED_APPS_EXTERNAL_PACKAGES setting (an example is shown in
__local_settings.py)
		Do one of the following:
		import each package separately
		python manage.py import_package rdm.db

		python manage.py import_package rdm.wrappers

		import all packages (which will also import external packages)
		python manage.py import_all

Exporting the package after making changes to the database

If I have an external package entitled ‘extpackage’ in the following
directory:

/home/janez/extpackage/

and I wish to commit some changes that I have made to the abstract
widget database:

I export the package like this:

python manage.py export_package extpackage /home/janez/extpackage/

this will export the package to /home/janez/extpackage/package_data. I
can safely commit and push this to the repository of the external
package.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/HARF_60-48-RF.png

_images/HierarchicalClustering_60.png

_static/minus.png

_images/ExampleDistance.png
->

_static/comment-close.png

_images/d914a910_2.png

_static/comment-bright.png

_images/pickle_1.png

_images/AttributeDistance.png
A=

_images/orange-SVM_1.png

_images/1688041475.png

cf_dev_wiki/decision-support-package-documentation.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

ClowdFlows decision support package documentation

This document provides a short overview of the decision support package.
The first section describes the organization, while the second section
describes the individual widgets and how they can be used.

Organization

The package follows the recommended code structure of ClowdFlows
packages:

workflows/decision_support/
├── db
│ └── package_data.json
├── __init__.py
├── interaction_views.py
├── library.py
├── settings.py
├── static
│ └── decision_support
│ └── icons
│ ├── treeview
│ │ ├── piechart.png
│ │ ├── sensitivity.png
│ │ └── wsm.png
│ └── widget
│ ├── piechart.png
│ ├── sensitivity.png
│ └── wsm.png
├── templates
│ ├── interactions
│ │ └── wsm.html
│ └── visualizations
│ ├── ds_charts.html
│ └── sensitivity_analysis.html
├── visualization_views.py
└── wsm.py

The db folder contains the exported package data (widgets, inputs,
outputs and categories) in json. If changes are made to local widgets or
new widgets are created, the package data must be updated using the
export_package management command.

The settings.py file contains package level settings, same as for
any ClowdFlows package, e.g., path to the package data file.

The static folder contains static files used by the package.
Currently these include only the icons.

The templates folder contains Django template HTML files. These are
divided into interactions and visualizations.

Most widgets in ClowdFlows can be divided into three categories:
regular, interactive and visualization widgets. Regular widgets
simply take an input and produce an output, while interactive widgets
take an input, request some additional input from the user (e.g.,
setting weights of attributes) and produce an output. Visualization
widgets take an input and output a certain visualization based on the
input (e.g., displaying a chart or a dataset).

The widget views, i.e., functions which are called when a widget is
executed by the user, are divided into:

		library.py

		interaction_views.py

		visualization_views.py

which reflect the categories listed above.

Of course the code can be divided into other Python modules. For
example, the wsm.py module includes the class implementing the
Weighted sum model, which is used in the views.

Interaction and visualization widgets have corresponding templates.
These (usually) also contain JavaScript for handling their GUIs.

Widgets

The package includes the following widgets:

		Weighted sum model*, implementing a simple decision support model,

		Sensitivity analysis*, offering the mechanism to see how each alternative’s score changes while changing the importance of one attribute,

		Decision support charts*, implementing several charts, which are useful for making reports and overviewing the data.

An example workflow can be found at:
http://clowdflows.org/workflow/383/.

Weighted sum model

Inputs:

		odt: Orange data table, with an optional label meta attribute

Outputs:

		odt: Orange data table, with an added score column and with normalized attribute values

		mdl: the WSM model object, which can be pickled and saved or used in the next two widgets.

Functionality:

When the widget is executed a popup is displayed, where the user can
assign a weight to each attribute, as well as the range of values of
the attribute and if the attribute should be maximized or minimized.

Weights can be normalized (so that they sum up to 100%) by clicking
the Normalize weights button and reset by clicking the Reset
button. After clicking the Apply button, the new table and the model
are produced.

Sensitivity analysis

Inputs:

		mdl: A decision support model, e.g.: a WSM object.

Outputs:

None.

Functionality:

When the widget is executed a popup is displayed, where the user can
choose which attribute to vary. After the selection, a graph
corresponding to the sensitivity analysis of this attribute is shown.
Thanks to the Highcharts library [http://www.highcharts.com/], the
graph can be modified by deselecting certain alternatives and it can be
saved in various formats (like PNG, PDF, SVG).

Decision support charts

Inputs:

		mdl: A decision support model, e.g.: a WSM object.

Outputs:

None.

Functionality:

When the widget is executed a popup is displayed, where the user can
choose between four charts:

		Weights pie chart*: The assigned weights visualized as a pie chart.

		Weights bar chart*: The assigned weights visualized as a bar chart.

		Alternatives column chart*: The scores of the alternatives visualized as a column chart.

		Attribute values chart*: The values for each attribute for each alternative visualized as a bar chart.

Each chart can be saved in various formats (like PNG, PDF, SVG).

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

cf_dev_wiki/rdm-package-documentation.html

 Navigation

 		
 index

 		ClowdFlows 1 documentation »

RDM package

The aim of the Relational Data Mining (RDM) package and tool is to make relational learning and inductive logic programming approaches publicly accessible.
The tool offers a common and easy-to-use interface to several relational learning algorithms and provides data access to several relational database management systems.

The RDM ClowdFlows package is an external package: the Python-RDM [http://rdm.readthedocs.io/en/latest/index.html] package should be first installed with pip and then the RDM ClowdFlows package should be included in ClowdFlows.

Prerequisites

		python >= 2.6

		mysql-connector-python (optionally, you can call the algorithms with their native input format)

Installing the Python-RDM package

Latest release from PyPI:

pip install python-rdm

Latest from GitHub:

pip install https://github.com/anzev/rdm/archive/master.zip

Dumping to Weka and Orange tables

The mysql-connector-python Python package is also required. If you
installed everything in requirements.txt, you should already have it.
Otherwise:

pip install mysql-connector-python

For dumping stuff to weka/orange data structures this is everything you
need.

Yap with full database dumping

Find the yap binaries for your OS or compile from source from Yap
downloads [http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html]. Use the
stable yap-6 version if possible.

Yap with mysql support

To use local ILP widgets, you’ll need yap prolog. To support ‘smarter’
dumping of data, where the db connection is forwarded to yap, you’ll
also need to compile yap with flags for myddas. Otherwise, you’ll have
to use the ‘dump full database’ flags on the corresponding widgets
(Databse to RSD, Database to Aleph).

You’ll need the mysql dev package. On debian systems:

sudo apt-get install libmysqlclient-dev

Compiling yap:

git clone git://yap.dcc.fc.up.pt/yap-6
cd yap-6
mkdir build
cd build
../configure --enable-tabling --enable-myddas
make

If everything went ok, run yap to see if myddas was successfully
compiled with yap. Run:

./yap

you should see something like:

YAP 6.2.3 (x86_64-linux): Mon Apr 8 11:19:20 CEST 2013
MYDDAS version MYDDAS-0.9.1
 ?-

Install:

make install

Prerequisites of specific ILP/RDM algorithms

Depending on what algorithms you wish to use, these are their dependencies.

		Yap prolog (preferably compiled with --tabling enabled for speedups)

There are sources as well as binaries for Windows and OS X available here [https://www.dcc.fc.up.pt/~vsc/Yap/downloads.html].

On Debian-based systems you can simply install it as:

apt install yap

		Java

These approaches depend on one original C program which must be compiled.
The sources are included with python-rdm in rdm/wrappers/tertius/src/.

 © Copyright 2017, ClowdFlows Team.
 Created using Sphinx 1.3.5.

_images/fc.png
Fol
change

_static/down-pressed.png

_images/orange-Rule-Learner.png

_static/down.png

_static/plus.png

_images/orange-Majority.png

_static/ajax-loader.gif

_images/pickle.png

_images/glass_3.png

_images/BiomineMedoids.png

_static/up.png

_images/ilp.png
ILP

_static/up-pressed.png

_images/ttest.png

_images/orange-LogisticRegression.png

_images/nlp.png
NLP

_static/file.png

_static/comment.png

